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This is the first part of a two-part paper dedicated to a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff-Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called the Bending-Gradient plate theory is described in the present paper. It is an extension to arbitrarily layered plates of the Reissner-Mindlin plate theory which appears as a special case of the Bending-Gradient plate theory when the plate is homogeneous. However, we demonstrate also that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner-Mindlin model. In part two (Lebée and Sab, 2010a), the Bending-Gradient theory is applied to multilayered plates and its predictions are compared to those of the Reissner-Mindlin theory and to full 3D Pagano's exact solutions. The main conclusion of the second part is that the Bending-Gradient gives good predictions of both deflection and shear stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.

Introduction

Laminated composite plates are widely used in engineering applications, especially in aeronautics. They offer excellent stiffness and strength performance for a low density. However, as fiber reinforced composites are very anisotropic materials, the overall plate properties of these laminates has been really difficult to capture. Because of a strong demand from industry for reliable models, many suggestions have been made.

Let us recall some essential requirements for such a model. The main goal is to simplify a computationally heavy 3D model into a 2D plate model without losing local 3D fields' accuracy. One would expect:

1. Good estimation of macroscopic deflection, 2. No limitation on local material symmetries, 3. A plate theory which is easy to implement with standard finite element tools, 4. Good relocalization of 3D fields in order to estimate local stresses.

The simplest and most widely-used theory is the Kirchhoff-Love plate model. This model is easy to implement and gives good estimates for in-plane stress components (far from the edges of the plate) and neglects the contribution of out-of-plane stress components to the stress energy. However, when the plate slenderness ratio L/h (h is the plate thickness and L the span) is not large enough, out-of-plane stresses have an increasing influence on the plate deflection. This phenomenon becomes sensitive when L/h < 10 for an isotropic plate and L/h < 40 for classical carbon fiber reinforced laminated plates and cannot be neglected for conventional use of composite laminates.

In recent decades many suggestions have been made to improve both deflection estimation and field localization for highly heterogeneous laminates. [START_REF] Reddy | On refined computational models of composite laminates[END_REF], [START_REF] Noor | An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[END_REF] and [START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] provided detailed reviews for these models. Two main approaches can be found: asymptotic approaches and axiomatic approaches. The first one is mainly based on the fact that h/L is a small parameter. Using asymptotic expansions in the small parameter h/L [START_REF] Caillerie | Thin elastic and periodic plates[END_REF]Lewinski, 1991c,b,a), it is found that the Kirchhoff-Love kinematic is actually the first order of the expansion. However, higher-order terms yield only intricated "Kirchhoff-Love" plate equations and no simple model to implement. This difficulty is illustrated in (Boutin, 1996) for 3D periodic composites and in Buannic and Cartraud (2001a,b) for periodic beams. Another asymptotic method is based on the so-called Variational Asymptotic Method (VAM) applied to plates by Yu et al. (2002b,a). The strength of this approach is that it does not make more assumption than having h/L small and, according to its authors, it could be applied also to any non-linearities. However, this method does not seem simple to implement in conventional finite element code.

The second main approach is based on assuming ad hoc displacement or stress 3D fields and often referred to as axiomatic approach. One of the assets of these approaches is that they seem easier to implement in finite element codes. These models can be "Equivalent Single Layer" or "Layerwise".

Equivalent Single Layer models treat the whole laminate as an equivalent homogeneous plate. Stress or displacement approaches have been suggested. [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] was the first one who suggested a stress approach for homogeneous and isotropic plates. His approach will be detailled further in the present work. Reissner's transverse shear stress field is a parabolic distribution through the thickness. However, experiments and some exact solutions [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF](Pagano, , 1970a,b) ,b) when considering composite laminates, revealed that shear stress distributions are much more distorted than that. At the same time, numerous displacement approaches were suggested. The roughest suggestion for taking into account transverse shear strains, ε α3 , is assuming that ε α3 is uniform through the thickness (First Order Shear Deformation Theory). Yet, it leads to too stiff shear behavior and necessitates the introduction of shear correction factors [START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[END_REF] and [START_REF] Whitney | Stress analysis of thick laminated composite and sandwich plates[END_REF]). Above all, this assumption enforces a discontinuous shear stress σ α3 through the thickness. Other models have been designed [START_REF] Reddy | A simple higher-order theory for laminated composite plates[END_REF][START_REF] Touratier | An efficient standard plate-theory[END_REF][START_REF] Vidal | A family of sinus finite elements for the analysis of rectangular laminated beams[END_REF] to remove the use of shear correction factors, but most of them did not lead to continuous σ α3 , as indicated by [START_REF] Reddy | On refined computational models of composite laminates[END_REF]. The most refined Equivalent Single Layers models, which finally led to continuous shear stress are zigzag models [START_REF] Ambartsumian | Microstructural effects in elastic composites[END_REF][START_REF] Whitney | The effect of transverse shear deformation on bending of laminated plate[END_REF][START_REF] Carrera | Historical review of zig-zag theories for multilayered plates and shells[END_REF]. However, these models are restricted to some specific configurations (symmetry of the plate and material constitutive equation) and involve higher-order partial derivative equations than the simple Reissner-Mindlin plate model.

The difficulties encountered with transverse stress fields instigated the consideration of enriched models: Layerwise models. In these models, all plate degrees of freedom are introduced in each layer of the laminate. Continuity conditions are enforced between layers. In this area, most of the improvements have been focused on refining the local displacement field. The reader can refer to [START_REF] Reddy | On refined computational models of composite laminates[END_REF] and [START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] for detailed reviews. It should be noted that a static approach has also been considered for layerwise models. Based on the variational formulation from [START_REF] Pagano | Stress fields in composite laminates[END_REF], it treats each layer as a Reissner-Mindlin plate and enforces stress continuity conditions [START_REF] Naciri | Interlaminar stress analysis with a new multiparticle modelization of multilayered materials (M4)[END_REF][START_REF] Diaz Diaz | Model for laminates[END_REF][START_REF] Hadj-Ahmed | Stress analysis in adhesive joints with a multiparticle model of multilayered materials (m4)[END_REF][START_REF] Caron | Multi-particle modelling for the prediction of delamination in multi-layered materials[END_REF][START_REF] Diaz Diaz | Analytical determination of the modes i, ii and iii energy release rates in a delaminated laminate and validation of a delamination criterion[END_REF][START_REF] Dallot | Limit analysis of multi-layered plates. part ii: Shear effects[END_REF]. Both stress and displacement approaches for Layerwise models lead to correct estimates of local 3D fields. However their main drawback is that they involve many more degrees of freedom (proportional to the number of layers) than Equivalent Single Layer models.

Based on [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] paper, the purpose of this work is to suggest an Equivalent Single Layer higherorder plate theory which gives an accurate enough estimate of transverse shear stresses in the linear elasticity framework. For this, we are motivated by two observations. The first one is that Kirchhoff-Love strain fields have clearly been identified as good first-order approximation for slender plates thanks to asymptotic expansion approaches. Thus, it would be inconsistent to refine in-plane fields further without introducing correct estimation of transverse fields. The second one is that the 3D equilibrium plays a critical role in the estimation of transverse shear stress in all the existing approaches. For instance, [START_REF] Whitney | Stress analysis of thick laminated composite and sandwich plates[END_REF] introduced 3D equilibrium in order to compute shear correction factors and more recently, when benchmarking several plate models, [START_REF] Noor | An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[END_REF] used the 3D equilibrium to estimate shear stresses. We show in this paper that revisiting the use of 3D equilibrium in order to derive transverse shear stress as [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] did for homogeneous plates leads to a full bending gradient plate theory. The Reissner-Mindlin theory will appear as a special case of the new Bending-Gradient theory when the plate is homogeneous.

The paper is organized as follows. In Section 2 notations are introduced. In Section 3 we recall briefly the full 3D elastic problem for a clamped plate and, in Section 4, how it is possible to derive plate equilibrium equations without any assumption on microscopic fields and how Reissner derived his shear stress distribution. Then we demonstrate in Section 5.1.1 that applying Reissner's approach for deriving transverse shear stress to a composite laminate involves more static shear degrees of freedom (DOF) than the usual shear forces Q. The mechanical meaning of these new DOF is presented and compatible fields are identified in Section 5.2. The constitutive equation for the bending gradient is derived in Section 5.3 which leads to the formulation of a complete plate theory. Finally, in Section 6, it is demonstrated that for the special case of homogeneous plates, the Reissner-Mindlin and the Bending-Gradient plate theory are identical. Thus a means to quantitatively compare both theories is provided and applied to conventional laminates.

Notations

Vectors and higher-order tensors are boldfaced and different typefaces are used for each order: vectors are slanted: T , u. Second order tensors are sans serif: M, e. Third order tensors are in typewriter style: Φ Φ Φ, Γ Γ Γ. Fourth order tensors are in calligraphic style D D D, c c c. Sixth order tensors are double stroked ❋ ❋ ❋, ❲ ❲ ❲.

When dealing with plates, both 2-dimensional (2D) and 3D tensors are used. Thus, T denotes a 3D vector and T denotes a 2D vector or the in-plane part of T . The same notation is used for higher-order tensors: σ is the 3D second-order stress tensor while σ is its in-plane part. When dealing with tensor components, the indexes specify the dimension: a ij denotes the 3D tensor ã with Latin index i, j, k.. = 1, 2, 3 and a αβ denotes the 2D tensor a with Greek indexes α, β, γ.. = 1, 2. C C C = C ijkl is the fourth-order 3D elasticity stiffness tensor. S S S = S ijkl = C C C -1 is the fourth-order 3D elasticity compliance tensor while c c c = c αβγδ denotes the plane-stress elasticity tensor. c c c is not the in-plane part of C C C but it is the inverse of the in-plane part of S S S: c c c = S S S -1 . The identity for in-plane elasticity is i αβγδ = 1 2 (δ αγ δ βδ + δ αδ δ βγ ), where δ αβ is Kronecker symbol

(δ αβ = 1 if α = β, δ αβ = 0 otherwise).
The transpose operation t • is applied to any order tensors as follows: t A αβ...ψω = A ωψ...βα .

Three contraction products are defined, the usual dot product (ã • b = a i b i ), the double contraction product (ã : b = a ij b ji ) and a triple contraction product (A A A ∴ B B B = A αβγ B γβα ). Einstein's notation on repeated indexes is used in these definitions. It should be noticed that closest indexes are summed together in contraction products. Thus, Φ Φ Φ • n = Φ αβγ n γ is different from n • Φ Φ Φ = n α Φ αβγ . The reader might easily check that i i i : i i i = i i i , i i i ∴ i i i = 3/2 δ and that i i i • i i i = i αβγδ i δǫζη is a sixth-order tensor. We recall also that resp. a • b, t a : b and t a a a ∴ b b b define inner products and associated norms on | 2 , | 2 2 and | 2 3 , respectively.

The derivation operator ∇ is also formally represented as a vector: ã • ∇ = a ij ∇ j = a ij,j is the divergence and a ⊗ ∇ = a αβ ∇ γ = a αβ,γ is the gradient. Here ⊗ is the dyadic product.

Finally, the integration through the thickness is noted • :

h 2 -h 2 f (x 3 )dx 3 = f .

The 3D model

We consider a linear elastic plate of thickness h occupying the 3D domain Ω = ω×] -h/2, h/2[, where ω ⊂ | 2 is the mid-plane of the plate (Figure 1). Cartesian coordinates (x 1 , x 2 , x 3 ) in the reference frame (ẽ 1 , ẽ2 , ẽ3 ) are used. The constitutive material is assumed to be invariant with respect to translations in the (x 1 , x 2 ) plane. Hence, the stiffness tensor C C C is a function of x 3 only. The plate is loaded on its upper and lower faces ω ± = ω × {±h/2} with the distributed force T ± . There are no body forces and the plate is clamped on its lateral edge, ∂ω×] -h/2, h/2[ where ∂ω is the edge of ω. The 3D problem P 3D is summarized as follows:

P 3D                  σ • ∇ = 0 on Ω. (1a) σ = C C C (x 3 ) : ε on Ω. (1b) σ • ẽ3 = T ± on ω ± . (1c) ε = 1 2 ∇ ⊗ ũ + ũ ⊗ ∇ on Ω. (1d) ũ = 0 on ∂ω×] -h/2, h/2[. ( 1e 
)
where ũ is the 3D displacement vector field, ε is the strain tensor field and σ is the stress tensor field. It is useful to recall the variational approach for the problem P 3D . The sets of statically compatible stress fields SC 3D and kinematically compatible strain fields KC 3D are introduced. SC 3D is the set of stress fields σ which comply with equilibrium equation (1a) and boundary condition on the upper and lower faces of the plate (1c). KC 3D is the set of strain fields ε which derive from a continuous displacement field ũ (Equation 1d) and comply with boundary condition on the edge of the plate (1e).

The strain and stress energy density w 3D and w * 3D are respectively given by:

w 3D (ε) = 1 2 ε : C C C : ε, w * 3D (σ) = 1 2 σ : S S S : σ (2)
They are related by the following Legendre-Fenchel transform:

w * 3D (σ) = sup ε σ : ε -w 3D (ε) (3) 
The kinematic variational approach states that the strain solution ε3D of P 3D is the one that minimizes P 3D among all kinematically compatible strain fields:

P 3D ε3D = min ε∈KC 3D P 3D (ε) (4)
where P 3D is the potential energy given by:

P 3D (ε) = Ω w 3D (ε) dΩ - ω T + • ũ+ + T -• ũ-dω (5) 
and ũ± = ũ(x 1 , x 2 , ±h/2) are the 3D displacement fields on the upper and lower faces of the plate.

The static variational approach states that the stress solution σ3D of P 3D is the one that minimizes P * 3D among all statically compatible stress fields:

P * 3D σ3D = min σ∈SC 3D P * 3D (σ) (6) 
where P * 3D is the complementary potential energy given by:

P * 3D (σ) = Ω w * 3D (σ) dΩ (7) 
Moreover, the following relation holds for the solution:

P 3D ε3D = -P * 3D σ3D ⇔ V 3D ext = V 3D int (8)
where the external work is:

V 3D ext = ω T + • ũ3D+ + T -• ũ3D-dω, (9) 
and the internal work is:

V 3D int = Ω σ3D : ε3D dΩ. ( 10 
)
4. Revisiting the Reissner-Mindlin plate theory

Reissner-Mindlin statically compatible fields

This section recalls shortly the procedure for the derivation of Reissner-Mindlin equilibrium equations [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF][START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[END_REF][START_REF] Caron | Un nouveau modèle de plaque multicouche épaisse. a new model for thick laminates[END_REF][START_REF] Nguyen | A model for thick laminates and sandwich plates[END_REF].

The generalized Reissner-Mindlin stresses associated to the 3D stress field σ are:

     N αβ (x 1 , x 2 ) = σ αβ (11a) M αβ (x 1 , x 2 ) = x 3 σ αβ (11b) Q α (x 1 , x 2 ) = σ α3 ( 11c 
)
where N is the membrane stress, M the bending moment, and Q the shear forces. Reissner-Mindlin equilibrium equations are obtained by integrating equations (1a) and x 3 ×(1a) with respect to x 3 leading to:

       σ αβ,β + [σ α3 ] h/2 -h/2 = 0 σ α3,α + [σ 33 ] h/2 -h/2 = 0 x 3 σ αβ,β -σ α3 + [x 3 σ α3 ] h/2 -h/2 = 0 Using boundary conditions (1c) yields:      N αβ,β + p α = 0 (12a) Q α,α + p 3 = 0 (12b) M αβ,β -Q α + µ α = 0 (12c)
where

p i = T + i + T - i are symmetric loadings per unit surface and µ i = h 2 (T + i -T - i )
are skew-symmetric loadings per unit surface. More precisely, p = (p α ) are membrane loadings per unit surface, p 3 is the out-of-plane loading per unit surface, µ = (µ α ) are couples per unit surface and µ 3 is the transverse bulk loading.

Since in-plane loadings (p, µ) and out-of-plane loadings (p 3 , µ 3 ) are not of the same order in the asymptotic analysis of the plate as h/L goes to 0 (see Lewinski (1991c)), and for the sake of simplicity, we focus only on the out-of-plane loading p 3 (p α = µ i = 0).

Finally, for clamped plates, SC RM is the set of statically compatible (N, M, Q) fields defined by:

(N, M, Q) ∈ SC RM ⇔      N • ∇ =  on ω (13a) M • ∇ -Q =  on ω (13b) Q • ∇ + q 3 = 0 on ω (13c)

Localization

The second step of the static approach consists in deriving the Reissner-Mindlin stress energy per unit surface w * RM (N, M, Q) from the 3D model. Then, the solution for the Reissner-Mindlin model is obtained by minimizing the complementary potential energy

P * RM = ω w * RM dω over all (N, M, Q) in SC RM .
As in many homogenization procedures, the derivation of w * RM is based on an approximation scheme for the real 3D stress fields in terms of Reissner-Mindlin stress fields:

σRM (x 1 , x 2 , x 3 ) = σ(N) (x 1 , x 2 , x 3 ) + σ(M) (x 1 , x 2 , x 3 ) + σ(Q) (x 1 , x 2 , x 3 )
where σ(N) , σ(M) , and σ(Q) are 3D stress fields generated by N, M and Q as follows:

       σ (N) ij = s (N) ijαβ (x 3 )N αβ (x 1 , x 2 ) (14a) σ (M) ij = s (M) ijαβ (x 3 )M αβ (x 1 , x 2 ) (14b) σ (Q) ij = s (Q) ijα (x 3 )Q α (x 1 , x 2 ) (14c)
where s

(N)

ijαβ (x 3 ), s (M)
ijαβ (x 3 ) and s (Q)

ijα (x 3 ) are localization tensors depending only on the x 3 coordinate. This can be rewritten using contraction products as: σRM = s s s (N) : N + s s s (M) : M + s s s (Q) • Q Once this approximation of stress fields is set, the stress potential energy density w * RM (N, M, Q) is defined simply as the quadratic form:

w * RM (N(x 1 , x 2 ), M(x 1 , x 2 ), Q(x 1 , x 2 )) = 1 2 σRM (x 1 , x 2 , x 3 ) : S S S(x 3 ) : σRM (x 1 , x 2 , x 3 ) (15)
Hence, a consistent choice for s s s (N) , s s s (M) and s s s (Q) is critical.

Kirchhoff-Love fields

The derivation of s s s (N) and s s s (M) is based on the Kirchhoff-Love plate theory. This theory is the first order of asymptotic expansion in the small parameter h/L [START_REF] Ciarlet | Justification of the 2-dimensional linear plate model[END_REF][START_REF] Caillerie | Thin elastic and periodic plates[END_REF]. According to this theory, plane-stress is assumed and the in-plane part of the displacement is linear in x 3 :

u KL α = U α -x 3 U 3,α (16) 
where U α is the average in-plane displacement and U 3 the average out-of-plane displacement (the deflection).

From this, the in-plane strains are derived as:

ε KL = 1 2 (U α,β + U β,α ) -x 3 U 3,αβ = e + x 3 κ ( 17 
)
where e is the membrane strain and κ the curvature at first order. We draw the reader's attention to the fact that strain components ε i3 are not null in the general case.

Membrane stress N and bending moments M are linearly dependent on e and κ:

N = A A A : e + B B B : κ (18a) M = t B B B : e + D D D : κ (18b) with: (A A A, B B B, D D D) = 1, x 3 , x 2 3 c c c(x 3 ) (19)
Using 3D constitutive equation under plane-stress assumption, Kirchhoff-Love constitutive equation ( 18) and in-plane strains definition (17), it is possible to express Kirchhoff-Love stress fields as functions of N and M:

   σ (N) (x 1 , x 2 , x 3 ) = c c c(x 3 ) : a a a + x 3 t b b b : N(x 1 , x 2 ) and σ (N) i3 = 0 (20a) σ (M) (x 1 , x 2 , x 3 ) = c c c(x 3 ) : (b b b + x 3 d d d ) : M(x 1 , x 2 ) and σ (M) i3 = 0 (20b)
where a a a, b b b and d d d are the reciprocal compliance tensors of the constitutive equation ( 18):

e = a a a : N + b b b : M (21a) κ = t b b b : N + d d d : M (21b)
Hence, for a homogeneous plate, Kirchhoff-Love stress fields are given by:

     σ (N) (x 1 , x 2 , x 3 ) = 1 h N(x 1 , x 2 ) and σ (N) i3 = 0 (22a) σ (M) (x 1 , x 2 , x 3 ) = 12x 3 h 3 M(x 1 , x 2 ) and σ (M) i3 = 0 (22b)

Shear fields for a homogeneous plate

Let us recall the approach from [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] for deriving σ(Q) in the case of a homogeneous monoclinic1 plate.

The main idea of the method is to recall that the shear forces are related to the bending moment through the plate equilibrium (13b). In the previous section, 3D fields generated by a (x 1 , x 2 )-invariant bending moment have been derived (Equation 22). If M is invariant, we have σ(M) • ∇ = . However, if M is function of x 1 and x 2 , σ(M) field is no more equilibrated and it comes directly:

σ (M) • ∇ = 12x3 h 3 (M • ∇) = 12x3 h 3 Q. f (Q) = 12x3
h 3 Q appears as the body force generated by the bending moment variations and is directly proportional to shear forces. Then σ(Q) is defined as the unique (x 1 , x 2 )-invariant stress field which balances f (Q) . This leads to the following auxiliary problem:

   σ(Q) • ∇ + 12x 3 Q h 3 = , where Q 3 = 0 (23a) σ(Q) • ẽ3 =  for x 3 = ±h/2 (23b)
The (x 1 , x 2 )-invariant solution of this problem is:

σ (Q) α3 = - x3 -h 2 12z Q α h 3 dz = 6 h 3 h 2 4 -x 2 3 Q α , σ (Q) αβ = 0 and σ (Q) 33 = 0
This is the original shear stress field derived by Reissner.

Extension to laminates under cylindrical bending

When considering laminated plates, the approach described above does not work any more, because it is not possible to bring out shear forces in (σ (M) • ∇). [START_REF] Whitney | Stress analysis of thick laminated composite and sandwich plates[END_REF] overcame this difficulty assuming the plate is under cylindrical bending. This is equivalent to assuming:

Q 1 = M 11,1 , Q 2 = M 12,1
, e 22 = 0 and χ 22 = 0.

Whitney's approach for deriving shear correction factors is still implemented in ABAQUS ( 2007) under additional assumptions. Compared to exact solutions for cylindrical bending [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF](Pagano, , 1970b)), this method gives rather good approximation for overall deflection and shear stresses in laminated plates. Eventually, it has also been generalized to functionally graded materials [START_REF] Nguyen | Shear correction factors for functionally graded plates[END_REF][START_REF] Nguyen | First-order shear deformation plate models for functionally graded materials[END_REF] and heterogeneous plates (Cecchi andSab, 2002, 2007), (Lebée and Sab, 2010c,d) and [START_REF] Isaksson | Shear correction factors for corrugated core structures[END_REF]. However, how shear stress should be extended for more complex loadings than cylindrical bending (especially involving torsion) is still an issue.

5. The Bending-Gradient plate theory 5.1. Fields generated by a linear variation of the bending moment 5.1.

Stress field

Since with laminated plates it is not possible to bring out shear forces with Reissner's approach, we suggest considering a more general shear variable, the full bending gradient: R R R = M⊗∇ where the third-order tensor R αβγ respects M αβ symmetries (R αβγ = R βαγ ). This will release the cylindrical bending assumption for laminated plates. In the following, we resume Section 4.2.2 procedure for deriving shear fields in the case of laminated plates.

We have σ(M)

• ∇ = 0 if M is (x 1 , x 2 )-invariant.
When M is function of x 1 and x 2 , we have:

σ(M) • ∇ = s (M) ijβα (x 3 )M αβ (x 1 , x 2 )∇ j = s (M) ijβα M αβ,γ δ jγ = s (M) iγβα R αβγ Again f (R) i = s (M)
iγβα R αβγ is the force per unit volume generated by first order variations of the bending moment R R R. Using σ(M) definition (Equation 20b) and assuming that each layer follows monoclinic symmetry we identify the force per unit volume as:

f (R) = c c c(x 3 ) : (b b b + x 3 d d d ) ∴ R R R and f (R) 3 = 0 (24)
Then, we define σ(R) the 3D stress generated by a (x 1 , x 2 )-invariant bending gradient R R R associated to the localization tensor s (R)

ijαβγ such as σ(R) = s s s (R) ∴ R R R.
Like in the case of homogeneous plate, this stress field is derived through the auxiliary problem:

σ(R) • ∇ + f (R) =  (25a) σ(R) • ẽ3 =  for x 3 = ±h/2 (25b)
The (x 1 , x 2 )-invariant solution of this problem is easily found, leading to the explicit determination of s s s (R) :

s (R) α3ηζǫ (x 3 ) = - x3 -h 2 c αηγδ (z) (b δγǫζ + z d δγǫζ ) dz , s (R) αβηζǫ = 0 and s (R) 33ηζǫ = 0 ( 26 
)
NB : The integral in the determination of σ(R) enforces directly the continuity of shear stress distributions and s s s (R) (-h/2) = s s s (R) (h/2) = 0 ensures the traction free boundary condition on the upper and lower faces of the plate.

Displacement field

Following a procedure similar to the one suggested by [START_REF] Whitney | Stress analysis of thick laminated composite and sandwich plates[END_REF] it is possible to derive a displacement field related to the bending gradient R R R. Using the 3D constitutive equation 1b, the strain related to R R R is written as:

ε (R) α3 = S αβ 2 σ (R) β3 , ε (R) αβ = 0 and ε (R) 33 = 0 ( 27 
)
where S = S αβ = 4S α3β3 is the out-of-plane shear compliance tensor. Then, neglecting the variations of R R R, it is possible to integrate this strain field and derive the following displacement field related to R R R:

u (R) α = x3 -h 2 S αζ (z)s (R) ζ3βγδ (z)dz + k (R) αβγδ R δγβ , u (R) 3 = 0 (28)
where

k (R)
αβγδ is a fourth order tensor following one minor symmetry: ) is an integration constant which is set by enforcing u (R) α = 0. Then, we introduce the displacement localization υ (R) by:

k (R) αβγδ = k (R) αβδγ . k k k (R
u (R) = υ (R) ∴ R R R, u (R) 3 = 0 (29)
Finally ũ(R) is a continuous displacement field.

Compatible fields for the full bending gradient

In Section 5.1.1, we have derived a localization tensor s s s (R) which depends on all bending gradient components: R αβγ = M αβ,γ . Accordingly we define a new approximation of stress fields involving all bending gradient components: σBG = σ(N) + σ(M) + σ(R)

and a new stress energy density similar to Definition 15:

w * BG (N, M, R R R)
Actually σBG approximation for 3D stress fields is a higher-order gradient theory, as described in Boutin (1996) for 3D continuum and Buannic and Cartraud (2001a) for periodic beams. However, to be consistent with higher-order theories, we should have taken into account the gradient of other static unknowns such as the membrane stress gradient for instance. It is the choice of the authors in the present work to limit the number of static variables only to those which have a contribution to the macroscopic equilibrium of the plate. Thus the number of unknowns remains limited and adapted to engineering applications, contrary to asymptotic expansions and other rigorous approaches in which no distinction is made between significant static unknowns. Now it is possible to design a complete plate model. 

5.

(R) αβ = 0, x 3 σ (R) αβ = 0, s (R) α3βγδ = i αβγδ (30)
and we have:

σ (R) α3 = i i i ∴ R R R = Q.
Only Q remains after integrating σ(R) through the thickness and the four other static unknowns are self-equilibrated stress. These stresses are analogous to bimoment and warping functions in the theory of beams under torsion from [START_REF] Vlasov | Thin-walled elastic beams[END_REF]. More precisely we have: R 111 and R 222 are the cylindrical bending part of shear forces Q 1 and Q 2 , R 121 and R 122 are the torsion part of shear forces and R 112 and R 221 are linked to strictly self-equilibrated stresses.

R 111 R 221 R 121 R 112 R 222 R 122 σ 13 s (R) 13111 = 1 s (R) 13122 = 0 s (R) 13121 = 0 s (R) 13211 = 0 s (R) 13222 = 0 s (R) 13221 = 1/2 σ 23 s (R) 23111 = 0 s (R) 23122 = 0 s (R) 23121 = 1/2 s (R) 23211 = 0 s (R) 23222 = 1 s (R) 23221 = 0
Bending gradient equilibrium equations. Two observations lead to the definition of statically compatible fields for the bending gradient SC BG . The first one is that we chose R R R such as

M ⊗ ∇ = R R R in Section 5.1.1.
The second one is that we have

Q = i i i ∴ R R R.
Adapting SC RM fields (13) we suggest the following definition of SC BG :

(N, M, R R R) ∈ SC BG ⇔      N • ∇ =  on ω (31a) M ⊗ ∇ -R R R = 0 0 0 on ω (31b) i i i ∴ R R R • ∇ + p 3 = 0 on ω (31c)

Bending gradient kinematically compatible fields

Dual variables. Taking the derivative of w * BG (N, M, R R R) with respect to each static unknown leads to the following definition of dual variables:

e = ∂w * BG ∂N , χ = ∂w * BG ∂M , Γ Γ Γ = ∂w * BG ∂R R R ( 32 
)
where e is associated to membrane strains and χ to curvatures. Γ Γ Γ is a generalized shear strain. Γ Γ Γ is a third-order 2D tensor following R R R symmetry:

Γ βαγ = Γ αβγ .
Internal work for the bending gradient plate model is accordingly written as:

V BG int = ω N : e + M : χ + t R R R ∴ Γ Γ Γdω (33)
Dualization of bending gradient equilibrium equations. Since SC BG is defined, it is very classical to identify kinematically compatible fields KC BG by integrating by parts the equilibrium equations ( 31) multiplied with ad hoc test fields Ũ and Φ Φ Φ, where Ũ (x 1 , x 2 ) is a 3D vector and Φ Φ Φ(x 1 , x 2 ) a third-order 2D tensor following R R R symmetry: Φ βαγ = Φ αβγ . Detailed computation is given in Appendix A.1. This leads to the weak formulation of the plate theory:

V BG int = V BG ext where V BG int = ω N : (i i i : (U ⊗ ∇)) + M : (Φ Φ Φ • ∇) + t R R R ∴ (Φ Φ Φ + i i i • ∇U 3 ) dω (34) V BG ext = ω p 3 U 3 dω + ∂ω (N • n) • U + M : (Φ Φ Φ • n) + (i i i ∴ R R R • n) U 3 dl ( 35 
)
and n is the in-plane unit vector outwardly normal to ω.

Dual strains are identified in V BG int as:

e = i i i : (U ⊗ ∇) , χ = Φ Φ Φ • ∇, Γ Γ Γ = Φ Φ Φ + i i i • ∇U 3 (36)
where Φ Φ Φ is a generalized rotation and e is exactly the Kirchhoff-Love membrane strain. Since we have assumed the plate is clamped, there is no external work on the edge ∂ω in V BG ext (Equation 35). This leads to the following condition on Ũ and Φ Φ Φ for clamped edges:

Φ Φ Φ • n =  on ∂ω, Ũ =  on ∂ω
The above remarks enable us to define the set of kinematically compatible fields KC BG for clamped plates: 

(e, χ, Γ Γ Γ) ∈ KC BG ⇔              e = i i i : (U ⊗ ∇) on ω (37a) χ = Φ Φ Φ • ∇ on ω (37b) Γ Γ Γ = Φ Φ Φ + i i i • ∇U 3 on ω (37c) Φ Φ Φ • n =  on ∂ω (37d) Ũ =  on ∂ω (37e) Localization of displacement. Assuming Γ Γ Γ = 0 in KC BG leads to Φ Φ Φ = -i i i •∇U 3 and therefore χ αβ = Φ αβγ ∇ γ = -U 3,
u BG = U -x 3 ∇U 3 + υ (R) ∴ ❋ ❋ ❋ ∴ Γ Γ Γ (38)
where ❋ ❋ ❋ is the generalized shear stiffness introduced in next section. This definition clearly separates first order and second order contributions to in-plane displacement.

Bending gradient constitutive equations

We have just derived statically and kinematically compatible fields. There remains to derive constitutive equations to get a complete plate theory.

Bending gradient stress energy density

A detailed analysis dedicated to material symmetries is provided in Appendix A.2. The main result is that material symmetry of the plate constituents with respect to (x 1 , x 2 ) plane uncouples Kirchhoff-Love (M, N) and shear unknowns (R R R). Since this is true for almost all laminated plates of interest, we restrict the analysis to this case. This means that the energy density can be written as the sum of two terms:

w * BG = w * BG,KL (N, M) + w * BG,R R R (R R R)
According to Definition 15, the shear part of the stress energy density is:

w * BG,R R R (R R R) = 1 2 h 2 -h 2 t s s s (R) ∴ R R R : S S S(x 3 ) : s s s (R) ∴ R R R dx 3 = 1 2 t R R R ∴ ❢ ❢ ❢ ∴ R R R (39) 
where:

❢ ❢ ❢ = t s s s (R) : S S S(x 3 ) : s s s (R) (40) 
Inserting s s s (R) (Equation 26) into ❢ ❢ ❢ definition leads to:

❢ αβγδǫζ = h 2 -h 2 4s (R) φ3γβα (x 3 )S φ3ψ3 (x 3 )s (R) ψ3δǫζ (x 3 )dx 3 (41) 
which becomes:

❢ ❢ ❢ = h 2 -h 2 x3 -h 2 t b b b + z d d d : c c c(z)dz • S(x 3 ) • x3 -h 2 c c c(z) : (b b b + z d d d ) dz dx 3 (42) 
where S = S αβ = 4S α3β3 is the out-of-plane shear compliance tensor.

The generalized shear compliance ❢ ❢ ❢ is a sixth-order tensor, with two symmetries. The major symmetry: t ❢ ❢ ❢ = ❢ ❢ ❢ and the minor symmetries: ❢ αβγδǫζ = ❢ βαγδǫζ . The identity for these tensors is: ■ αβγδǫζ = i αβǫζ δ γδ . ❢ ❢ ❢ definition ensures symmetry and positiveness. However, ❢ ❢ ❢ is not always definite since four static degrees of freedom are self-equilibrated stress (like warping is degenerated in the torsion of a beam with a circular section). More details about ❢ ❢ ❢ kernel is given in Appendix A.3.

Once the stress energy density is defined, it is straightforward to derive the constitutive equation:

Γ Γ Γ = ∂w * BG ∂R R R = ❢ ❢ ❢ ∴ R R R (43) 

Bending gradient strain energy density

The strain energy density is defined through the Legendre-Fenchel transform. Thus it necessitates the definition of ❢ ❢ ❢ inverse. As indicated previously, ❢ ❢ ❢ is not always definite. This is the case for a homogeneous plate. Yet it is possible to be more explicit about ❢ ❢ ❢ inverse.

The generalized shear compliance ❢ ❢ ❢ maps symmetric third-order tensors on its image:

❢ ❢ ❢ : R R R ∈ | 2 3 -→ ❢ ❢ ❢ ∴ R R R = Γ Γ Γ ∈ Im (❢ ❢ ❢) ⊆ | 2 3
In order to define an inverse for ❢ ❢ ❢ we introduce the Moore-Penrose pseudo inverse ❋ ❋ ❋ defined as

❋ ❋ ❋ = lim κ→0 (❢ ❢ ❢ ∴ ❢ ❢ ❢ + κ■ ■ ■) -1 ∴ ❢ ❢ ❢
For instance ( λ 0 0 0 ) pseudo inverse is 1/λ 0 0 0 . With this definition we have:

❋ ❋ ❋: Γ Γ Γ ∈ | 2 3 -→ ❋ ❋ ❋ ∴ Γ Γ Γ = R R R ∈ Im (❋ ❋ ❋) ⊆ | 2 3 Hence ❋ ❋ ❋ ∴ ❢ ❢ ❢ is the orthogonal projector onto Im (❋ ❋ ❋) and ■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋ is the orthogonal projector onto Ker (❋ ❋ ❋).
Defining an inverse relation for ❢ ❢ ❢ imposes to restrain ❋ ❋ ❋ domain to Im (❢ ❢ ❢):

(■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋) ∴ Γ Γ Γ = 0 0 0.
Thus there is an internal constraint over generalized shear strains Γ Γ Γ when ❢ ❢ ❢ is not positive definite. Finally, we have the equivalence:

Γ Γ Γ = ❢ ❢ ❢ ∴ R R R (■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋) ∴ Γ Γ Γ = 0 0 0 ⇔ R R R = ❋ ❋ ❋ ∴ Γ Γ Γ + R R R k ❋ ❋ ❋ ∴ ❢ ❢ ❢ ∴ R R R k = 0 0 0 (44)
This enables the definition of the shear part of the strain energy density, using the Legendre-Fenchel transform:

w BG,Γ Γ Γ (Γ Γ Γ) = 1 2 t Γ Γ Γ ∴ ❋ ❋ ❋ ∴ Γ Γ Γ for Γ Γ Γ such that (■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋) ∴ Γ Γ Γ = 0 0 0 (45)

Summary of the Bending gradient plate model

Let us summarize all the definitions introduced for the new plate model. The set of kinematically compatible fields is:

(e, χ, Γ Γ Γ) ∈ KC BG ⇔              e = i i i : (U ⊗ ∇) on ω (46a) χ = Φ Φ Φ • ∇ on ω (46b) Γ Γ Γ = Φ Φ Φ + i i i • ∇U 3 on ω (46c) Φ Φ Φ • n =  on ∂ω (46d) Ũ =  on ∂ω (46e)
where e is the conventional in-plane plate strain, χ is the curvature, Γ Γ Γ is the generalized shear strain and Φ Φ Φ is the generalized rotation. These fields are almost identical to Reissner-Mindlin kinematically compatible fields but the rotation vector is replaced by the generalized third-order rotation tensor Φ Φ Φ. Assuming Φ Φ Φ = i i i •ϕ in 46, where ϕ is a vector representing rotations leads to Reissner-Mindlin-like kinematics:

χ = i i i : (ϕ ⊗ ∇)
and Φ Φ Φ • n = 0 ⇔ ϕ = 0. Thus in the general case, Reissner-Mindlin kinematics can be interpreted as a restriction of Φ Φ Φ to i i i • ϕ.

The set of statically compatible fields is

(N, M, R R R) ∈ SC BG ⇔      N • ∇ =  on ω (47a) M ⊗ ∇ ∇ ∇ -R R R = 0 0 0 on ω (47b) (i i i ∴ R R R) • ∇ = -p 3 on ω (47c)
where N is the membrane stress, M is the bending moment and R R R the gradient of the bending moment. This set of equations is almost identical to Reissner-Mindlin equations where shear forces have been replaced by the bending gradient R R R.

Finally, for constitutive material following local monoclinic symmetry with respect to (x 1 , x 2 ) plane (uncoupling between R R R and (N, M)) the Bending-Gradient plate constitutive equations write as:

     N = A A A : e + B B B : χ (48a) M = t B B B : e + D D D : χ (48b) Γ Γ Γ = ❢ ❢ ❢ ∴ R R R, where (■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋) ∴ Γ Γ Γ = 0 (48c)
The solution of the plate model must comply with the three sets of equations (46,47,48). We recall also variational approaches for the model: solving the static approach of Bending-Gradient consists in finding the set of statically compatible fields (N, M, R R R) BG which minimizes the complementary potential energy:

P * BG (N, M, R R R) BG = min (N,M,R R R)∈SC BG P * BG (N, M, R R R) (49) 
where P * BG , the complementary potential energy of the bending gradient plate problem P BG is written as:

P * BG (N, M, R R R) = ω w * BG (N, M, R R R) dω (50) 
Again, the strain potential energy of P BG is:

P BG (e, χ, Γ Γ Γ) = ω w BG (e, χ, Γ Γ Γ) -p 3 U 3 dω (51)
and solving the kinematic approach of P BG consists in finding the set of kinematically compatible fields (e, χ, Γ Γ Γ) BG which minimizes the strain potential energy under the kinematic constraint (■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋) ∴ Γ Γ Γ = 0 0 0:

P BG (e, χ, Γ Γ Γ) BG = min (e,χ,Γ Γ Γ)∈KC BG (■ ■ ■-❢ ❢ ❢∴❋ ❋ ❋)∴Γ Γ Γ=0 0 0 P BG (e, χ, Γ Γ Γ) (52) 
Note that the model presented in this paper for clamped plates can be extended to other boundary conditions as detailed in Appendix A.4.

6. Bending-Gradient or Reissner-Mindlin plate model?

Homogeneous plate

For a homogeneous plate, the body force becomes

f (R) = 12x 3 h 3 i i i ∴ R R R and f (R) 3 = 0 (53)
and the bending-gradient localization is

s (R) α3βγδ (x 3 ) = 6 h 3 h 2 4 -x 2 3 i αβγδ , s (R) αβγδǫ = 0 and s (R) 33γδǫ = 0 (54)
which is exactly the same result as the one from Reissner derived in Section 4.2.2. Moreover, the generalized shear compliance is:

❢ ❢ ❢ = 6 5h i i i • S • i i i (55)
and the shear stress energy is:

w * BG,R R R (R R R) = 1 2 t R R R ∴ i i i • 6 5h S • i i i ∴ R R R (56) Since Q = i i i ∴ R R R
, it is possible to identify there the Reissner-Mindlin stress energy density as:

w * RM,Q (Q) = 1 2 t Q • 6 5h S • Q
which leads to the Reissner-Mindlin constitutive equation:

Q = 5h 6 S -1 • γ
where γ stands here for Reissner-Mindlin plate shear strain. This is the result from [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] which exhibits the well-known shear correction factor k α = 5/6. It is furthermore demonstrated in Appendix A.5 that boundary conditions are also identical.

Finally, for homogeneous plates, the Reissner-Mindlin model and the Bending-Gradient model are completely identical.

Moreover, the displacement field suggested in Section 5.2.2 becomes:

u BG = U -x 3 ∇U 3 + 5 4 x 3 - 4x 3 3 3h 2 2 3 i i i ∴ Φ Φ Φ + ∇U 3 (57) 
Identifying ϕ = 2 3 i i i ∴ Φ Φ Φ, this is rewritten as:

u BG = U + x 3 ϕ + x 3 4 - 5x 3 3 3h 2 γ ( 58 
)
with γ = ϕ + ∇U 3 . This displacement field is very similar to the one chosen by [START_REF] Reddy | A simple higher-order theory for laminated composite plates[END_REF] in order to build a higher order plate theory. However, in the present case, the second order term in γ involves not only a cubic function of x 3 but also a linear term. This illustrates that refinements in displacement fields does not necessarily follow a Taylor expansion, contrary to many suggestions [START_REF] Reddy | On refined computational models of composite laminates[END_REF][START_REF] Altenbach | Theories for laminated and sandwich plates. a review[END_REF].

Projection of the Bending-Gradient plate model

Since in some cases, the Bending-Gradient is turned into a Reissner-Mindlin plate model, we need a means to estimate the difference between both plate models. For this, we define the projection of the Bending-Gradient model on a Reissner-Mindlin model.

The shear forces energy density in the case of a Reissner-Mindlin plate model writes as:

w * RM,Q (Q) = 1 2 t Q • f RM • Q (59) Since Q = i i i ∴ R R R,
this stress energy becomes in Bending-Gradient plate model:

w * BG,R R R (R R R) = 1 2 t R R R ∴ i i i • f RM • i i i ∴ R R R (60) 
Thus a Reissner-Mindlin compliance f RM is expressed in the Bending-Gradient exactly as for a homogeneous plate (Equation 55):

❢ ❢ ❢ RM = i i i • f RM • i i i (61) 
Then, we define the orthogonal projection of a Bending-Gradient compliance tensor ❢ ❢ ❢ on a Reissner-Mindlin compliance tensor f RM . For this, we introduce the following inner product:

❢ αβγδǫζ ❣ αβγδǫζ = t ❢ ❢ ❢ ::: ❣ ❣ ❣ (62)
and the related norm:

❢ ❢ ❢ = t ❢ ❢ ❢ ::: ❢ ❢ ❢ (63) 
We define ❢ ❢ ❢ RM the Reissner-Mindlin part of ❢ ❢ ❢ as the projection of ❢ ❢ ❢ on the linear subspace of tensors writting as

❣ ❣ ❣ RM = i i i • g RM • i i i : ∀❣ ❣ ❣ RM , t ❢ ❢ ❢ -❢ ❢ ❢ RM ::: ❣ ❣ ❣ RM = 0 (64)
which is equivalent to:

∀g RM , t f RM : g RM = t 2 3 i i i ∴ ❢ ❢ ❢ ∴ 2 3 i i i : g RM (65) 
Thus

f RM = 2 3 i i i ∴ ❢ ❢ ❢ ∴ 2 3 i i i (66) 
defines the projection of ❢ ❢ ❢ on Reissner-Mindlin plate model and the Reissner-Mindlin part of ❢ ❢ ❢ is:

❢ ❢ ❢ RM = 2 3 i i i • i i i ∴ ❢ ❢ ❢ ∴ 2 3 i i i • i i i (67) 
The projection 39). Actually it is possible to give further mechanical interpretation of this result. Let us consider the following change of generalized shear static variables:

f RM of ❢ ❢ ❢ is equivalent to assuming R R R = 2 3 i i i • Q in w * BG,R R R (Equation
Q α = R αββ , ∆Q 1 = R 111 -2R 122 , ∆Q 2 = 2R 121 -R 222 , R 112 and R 221 (68) 
In that case the four self-equilibrated static unknowns are ∆Q 1 , ∆Q 2 , R 112 , and R 221 . They are clearly set apart from shear forces Q α . Setting to zero pure warping unknowns in order to keep only "pure shear forces" leads exactly to R R R = 2 3 i i i • Q. From this, ❢ ❢ ❢ RM can be considered as the restriction of ❢ ❢ ❢ when setting warping unknowns to zero. Consequently, we introduce the pure warping part of ❢ ❢ ❢ as the orthogonal complement of ❢ ❢ ❢ RM :

❢ ❢ ❢ W = ❢ ❢ ❢ -❢ ❢ ❢ RM (69) 
Finally we suggest the following relative distance between the Bending-Gradient plate model and the Reissner-Mindlin one:

∆ RM/BG = ❢ ❢ ❢ W ❢ ❢ ❢ (70)
∆ RM/BG gives an estimate of the pure warping fraction of the shear stress energy and can be used as a criterion for assessing the need of the Bending-Gradient model. When the plate constitutive equation is restricted to a Reissner-Mindlin one, we have exactly ∆ RM/BG = 0.

As illustration, we derived ∆ RM/BG for angle-ply laminates which were considered by Pagano (1970a). Each ply is made of unidirectional fiber-reinforced material oriented at θ relative to the direction x 1 . All plies have the same thickness and are perfectly bounded. A laminate is denoted between brackets by the successive ply-orientations along the thickness. For instance [0 • , 90 • ] denotes a 2-ply laminate where the lower ply fibers are oriented in the bending direction. The constitutive behavior of a ply is assumed to be transversely isotropic along the direction of the fibers and engineering constants are chosen similar to those of [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]:

E L = 25 × 10 6 psi, E T = E N = 1 × 10 6 psi, G LT = G LN = 0.5 × 10 6 psi, G N T = E T 2(1 + ν N T ) = 0.4 × 10 6 psi, ν LT = ν LN = ν N T = 0.25
where G N T has been changed to preserve transversely isotropic symmetry. L is the longitudinal direction oriented in the (x 1 , x 2 ) plane at θ with respect to ẽ1 , T is the transverse direction and N is the normal direction coinciding with ẽ3 On Figure 2, ∆ RM/BG is plotted for any 2-ply configuration and on Figure 3, for any 4-ply symmetric configurations. It appears clearly that ∆ RM/BG , is not negligible (up to 37%). Thus, neglecting warping with a simple Reissner-Mindlin plate model applied to such laminates can lead up to 37% error in the shear stress energy and therefore in the second order deflection. 

Conclusion

In this work, applying Reissner's approach for deriving transverse shear stress to a laminated plate revealed that more static shear DOF than the usual shear forces are involved in microscopic fields. Thanks to conventional variational tools, this led to the design of a new higher-order gradient plate theory involving the gradient of the bending moment, instead of shear forces. Statically and kinematically compatible fields as well as constitutive equations were derived. The mechanical meaning of the bending gradient was identified as self-balanced static unknowns associated to warping functions in addition to usual shear forces. The present plate theory does not require any specific constitutive material symmetry and the monoclinic symmetry with respect to plane of ẽ3 normal was introduced only for convenience. We demonstrated also that the Bending-Gradient plate model is the exact extension to laminated plates of the Reissner-Mindlin model originally proposed for homogeneous plates. Finally, we will show in an upcoming paper that the Bending-Gradient model can be used for a higher order homogenization of in-plane periodic plates.

In the second part of this work (Lebée and Sab, 2010a), comparison between models is performed in the cylindrical bending case which makes use of only closed-form solutions. It will be demonstrated that the Bending Gradient model contains most of the relevant aspects of shear effects with very little computation and simple interpretation. The main conclusion is that the Bending-Gradient gives good predictions of both 
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 1 Figure 1: The Plate Configuration

  αβ = κ αβ coincides with the Kirchhoff-Love definition of curvatures. It is then possible to rewrite the Bending-Gradient curvature as the sum of two terms, χ = κ +Γ Γ Γ • ∇, the first order Kirchhoff-Love curvature and the second order contribution of the generalized shear strains Γ Γ Γ. Based on this observation, we suggest the following definition of in-place displacement localization fields:
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 2 Figure 2: Relative distance between the Reissner-Mindlin and the Bending-Gradient plate models ∆ RM/BG for any 2-ply configuration
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 3 Figure 3: Relative distance between the Reissner-Mindlin and the Bending-Gradient plate models ∆ RM/BG for any symmetric 4-ply configuration

  2.1. Bending gradient statically compatible fields Generalized stress. The full bendinggradient R R R has six components (R 111 , R 221 , R 121 , R 112 , R 222 , R 122 )whereas Q has two components. Since only (N, M, Q) appeared in Reissner-Mindlin statically compatible fields, SC RM , while integrating 3D equilibrium equation (1a) through the thickness in Section 4.1, using the full bending gradient as static unknown introduces four static unknowns which a priori are not related to plate equilibrium (13).

	Let us derive generalized stresses associated to σ(R) . Using Equation 26 and integrating by parts when
	necessary leads to:
	σ

The constitutive material is symmetric with respect to (x 1 , x

) plane. This assumption could be released but would compromise the simplicity of the presentation.

A.2. Symmetries

First, we derive N, M and R R R transformation formulas through orthogonal transformations. Consider a 3D orthogonal transformation P such as x † = P • x is the image of x, ( t P • P = δ and det P = ±1). A stress field σ has the image σ † given by: σ † (x) = P • σ

The analysis is restricted to planar transformations:

where P is a 2D orthogonal matrix. Then we have:

This equation does not depend on P 33 sign. Thus we obtain:

The same approach leads to the following equation for the bending moment:

Thus taking the gradient of the previous equation leads to: R † αβγ (x η ) = P 33 P αδ P βǫ P γζ R δǫζ (P θη x θ )

When P is diagonal, the above transformation equations simplify. For instance, we have:

where ǫ P M αβ = ±1 is the symmetry index of M αβ with respect to P . For instance ǫ P N αβ = 1 indicates that N αβ is symmetric with respect to P and ǫ P R αβγ = -1 indicates that R αβγ is skew-symmetric with respect to P . Finally, it is possible to use all the previous transformation equations to derive the transformation of the stress energy. In the case P reflects a material symmetry, this energy remains invariant. As a consequence, two components having opposite symmetry indexes with respect to P are uncoupled Table 1 summarizes symmetry indexes for three main symmetries. A major observation is that material invariance through π rotation around ẽ3 axis (case a) ensures uncoupling between shear degrees of freedom R R R and Love Kirchhoff degrees of freedom N, and M. A plate where for all values of x 3 the local behavior is symmetric with respect to (x 1 , x 2 ) plane fulfills the π rotation around ẽ3 symmetry. Thus, uncoupling between N, M and R R R holds true also for any kind of laminated plate provided the local constitutive behavior is monoclinic relative to (x 1 , x 2 ) plane (which is the case for fibrous plies).

A.3. Kernel properties of the generalized-shear compliance

In this section we demonstrate that ❋ ❋ ❋ 

is the projector on the orthogonal complement of ❢ ❢ ❢ kernel, we have:

which is the first expected result. The second result is straightforward when noticing that ❢ ❢ ❢ and ❋ ❋ ❋ have the same kernel: since ❢ ❢ ❢ and ❋ ❋ ❋ are diagonalizable, we have:

. Mixed boundary conditions

The edge is separated into two parts: ∂ω k where generalized strains ( Ũ d , H d ) are enforced and ∂ω s where generalized stress (V d , M d ) are enforced. Ũ d is the forced displacement on the edge, H d is a symmetric second-order tensor related to a forced rotation on the edge, V d is the force per unit length enforced on the edge and M d is the full bending moment enforced on the edge

A.4.1. Kinematically compatible fields

We define Bending-Gradient kinematically compatible fields for mixt boundary condition plates as:

The potential energy is:

A.4.2. Statically admissible fields Bending-Gradient statically compatible fields for mixt boundary condition are:

, where t is orthogonal to n looks unnatural since it involves stresses that do not belong to the edge surface. It is a fourth boundary condition common to higher-order models and related to free edge effects similar to those described in Lebée and Sab (2010b). The complementary energy is:

A.5. Degenerated boundary conditions in the homogeneous case The pseudo inverse in homogeneous case is easy to find:

and ❢ ❢ ❢ ∴❋ ❋ ❋ = 2 3 i i i •i i i . The generalized shear strain, solution of P BG fulfils (■ ■ ■ -❢ ❢ ❢ ∴ ❋ ❋ ❋)∴Γ Γ Γ = 0, which is equivalent to: Φ Φ Φ = 2 3 i i i • i i i ∴ Φ Φ Φ (see Appendix A.3). Then it is possible to rewrite the work of M on the edges ∂ω:

which is identical to the Reissner-Mindlin work on the edge ∂ω where the rotation pseudo-vector is ϕ = 2 3 i i i ∴Φ Φ Φ.