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Abstract

This is the first part of a two-part paper dedicated to a new plate theory for out-of-plane loaded thick
plates where the static unknowns are those of the Kirchhoff-Love theory (3 in-plane stresses and 3 bending
moments), to which six components are added representing the gradient of the bending moment. The
new theory, called the Bending-Gradient plate theory is described in the present paper. It is an extension
to arbitrarily layered plates of the Reissner-Mindlin plate theory which appears as a special case of the
Bending-Gradient plate theory when the plate is homogeneous. However, we demonstrate also that, in the
general case, the Bending-Gradient model cannot be reduced to a Reissner-Mindlin model. In part two
(Lebée and Sab, 2010a), the Bending-Gradient theory is applied to multilayered plates and its predictions
are compared to those of the Reissner-Mindlin theory and to full 3D Pagano’s exact solutions. The main
conclusion of the second part is that the Bending-Gradient gives good predictions of both deflection and shear
stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-
Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio
L/h goes to infinity.
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1. Introduction

Laminated composite plates are widely used in engineering applications, especially in aeronautics. They
offer excellent stiffness and strength performance for a low density. However, as fiber reinforced composites
are very anisotropic materials, the overall plate properties of these laminates has been really difficult to
capture. Because of a strong demand from industry for reliable models, many suggestions have been made.

Let us recall some essential requirements for such a model. The main goal is to simplify a computationally
heavy 3D model into a 2D plate model without losing local 3D fields’ accuracy. One would expect:

1. Good estimation of macroscopic deflection,

2. No limitation on local material symmetries,

3. A plate theory which is easy to implement with standard finite element tools,

4. Good relocalization of 3D fields in order to estimate local stresses.

The simplest and most widely-used theory is the Kirchhoff-Love plate model. This model is easy to
implement and gives good estimates for in-plane stress components (far from the edges of the plate) and
neglects the contribution of out-of-plane stress components to the stress energy. However, when the plate
slenderness ratio L/h (h is the plate thickness and L the span) is not large enough, out-of-plane stresses
have an increasing influence on the plate deflection. This phenomenon becomes sensitive when L/h < 10
for an isotropic plate and L/h < 40 for classical carbon fiber reinforced laminated plates and cannot be
neglected for conventional use of composite laminates.
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In recent decades many suggestions have been made to improve both deflection estimation and field
localization for highly heterogeneous laminates. Reddy (1989), Noor and Malik (2000) and Carrera (2002)
provided detailed reviews for these models. Two main approaches can be found: asymptotic approaches
and axiomatic approaches. The first one is mainly based on the fact that h/L is a small parameter. Using
asymptotic expansions in the small parameter h/L (Caillerie, 1984; Lewinski, 1991c,b,a), it is found that the
Kirchhoff-Love kinematic is actually the first order of the expansion. However, higher-order terms yield only
intricated “Kirchhoff-Love” plate equations and no simple model to implement. This difficulty is illustrated
in (Boutin, 1996) for 3D periodic composites and in Buannic and Cartraud (2001a,b) for periodic beams.
Another asymptotic method is based on the so-called Variational Asymptotic Method (VAM) applied to
plates by Yu et al. (2002b,a). The strength of this approach is that it does not make more assumption than
having h/L small and, according to its authors, it could be applied also to any non-linearities. However,
this method does not seem simple to implement in conventional finite element code.

The second main approach is based on assuming ad hoc displacement or stress 3D fields and often referred
to as axiomatic approach. One of the assets of these approaches is that they seem easier to implement in
finite element codes. These models can be “Equivalent Single Layer“ or ”Layerwise“.

Equivalent Single Layer models treat the whole laminate as an equivalent homogeneous plate. Stress
or displacement approaches have been suggested. Reissner (1945) was the first one who suggested a stress
approach for homogeneous and isotropic plates. His approach will be detailled further in the present work.
Reissner’s transverse shear stress field is a parabolic distribution through the thickness. However, exper-
iments and some exact solutions (Pagano, 1969, 1970a,b) when considering composite laminates, revealed
that shear stress distributions are much more distorted than that. At the same time, numerous displacement
approaches were suggested. The roughest suggestion for taking into account transverse shear strains, εα3, is
assuming that εα3 is uniform through the thickness (First Order Shear Deformation Theory). Yet, it leads
to too stiff shear behavior and necessitates the introduction of shear correction factors (Mindlin (1951) and
Whitney (1972)). Above all, this assumption enforces a discontinuous shear stress σα3 through the thickness.
Other models have been designed (Reddy, 1984; Touratier, 1991; Vidal and Polit, 2008) to remove the use
of shear correction factors, but most of them did not lead to continuous σα3, as indicated by Reddy (1989).
The most refined Equivalent Single Layers models, which finally led to continuous shear stress are zigzag
models (Ambartsumian, 1969; Whitney, 1969; Carrera, 2003). However, these models are restricted to some
specific configurations (symmetry of the plate and material constitutive equation) and involve higher-order
partial derivative equations than the simple Reissner-Mindlin plate model.

The difficulties encountered with transverse stress fields instigated the consideration of enriched models:
Layerwise models. In these models, all plate degrees of freedom are introduced in each layer of the laminate.
Continuity conditions are enforced between layers. In this area, most of the improvements have been focused
on refining the local displacement field. The reader can refer to Reddy (1989) and Carrera (2002) for detailed
reviews. It should be noted that a static approach has also been considered for layerwise models. Based on
the variational formulation from Pagano (1978), it treats each layer as a Reissner-Mindlin plate and enforces
stress continuity conditions (Naciri et al., 1998; Diaz Diaz et al., 2001; Hadj-Ahmed et al., 2001; Caron et al.,
2006; Diaz Diaz et al., 2007; Dallot and Sab, 2008). Both stress and displacement approaches for Layerwise
models lead to correct estimates of local 3D fields. However their main drawback is that they involve many
more degrees of freedom (proportional to the number of layers) than Equivalent Single Layer models.

Based on Reissner (1945) paper, the purpose of this work is to suggest an Equivalent Single Layer higher-
order plate theory which gives an accurate enough estimate of transverse shear stresses in the linear elasticity
framework. For this, we are motivated by two observations. The first one is that Kirchhoff-Love strain
fields have clearly been identified as good first-order approximation for slender plates thanks to asymptotic
expansion approaches. Thus, it would be inconsistent to refine in-plane fields further without introducing
correct estimation of transverse fields. The second one is that the 3D equilibrium plays a critical role in the
estimation of transverse shear stress in all the existing approaches. For instance, Whitney (1972) introduced
3D equilibrium in order to compute shear correction factors and more recently, when benchmarking several
plate models, Noor and Malik (2000) used the 3D equilibrium to estimate shear stresses. We show in this
paper that revisiting the use of 3D equilibrium in order to derive transverse shear stress as Reissner (1945)
did for homogeneous plates leads to a full bending gradient plate theory. The Reissner-Mindlin theory will
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appear as a special case of the new Bending-Gradient theory when the plate is homogeneous.
The paper is organized as follows. In Section 2 notations are introduced. In Section 3 we recall briefly the

full 3D elastic problem for a clamped plate and, in Section 4, how it is possible to derive plate equilibrium
equations without any assumption on microscopic fields and how Reissner derived his shear stress distribu-
tion. Then we demonstrate in Section 5.1.1 that applying Reissner’s approach for deriving transverse shear
stress to a composite laminate involves more static shear degrees of freedom (DOF) than the usual shear
forces Q. The mechanical meaning of these new DOF is presented and compatible fields are identified in
Section 5.2. The constitutive equation for the bending gradient is derived in Section 5.3 which leads to the
formulation of a complete plate theory. Finally, in Section 6, it is demonstrated that for the special case
of homogeneous plates, the Reissner-Mindlin and the Bending-Gradient plate theory are identical. Thus a
means to quantitatively compare both theories is provided and applied to conventional laminates.

2. Notations

Vectors and higher-order tensors are boldfaced and different typefaces are used for each order: vectors
are slanted: T , u. Second order tensors are sans serif: M, e. Third order tensors are in typewriter style: ΦΦΦ,
ΓΓΓ. Fourth order tensors are in calligraphic style DDD, ccc. Sixth order tensors are double stroked ❋❋❋,❲❲❲.

When dealing with plates, both 2-dimensional (2D) and 3D tensors are used. Thus, T̃ denotes a 3D vector
and T denotes a 2D vector or the in-plane part of T̃ . The same notation is used for higher-order tensors: σ̃
is the 3D second-order stress tensor while σ is its in-plane part. When dealing with tensor components, the
indexes specify the dimension: aij denotes the 3D tensor ã with Latin index i, j, k.. = 1, 2, 3 and aαβ denotes
the 2D tensor a with Greek indexes α, β, γ.. = 1, 2. C̃CC = Cijkl is the fourth-order 3D elasticity stiffness

tensor. S̃SS = Sijkl = C̃CC
−1

is the fourth-order 3D elasticity compliance tensor while ccc = cαβγδ denotes the
plane-stress elasticity tensor. ccc is not the in-plane part of C̃CC but it is the inverse of the in-plane part of S̃SS :
ccc = SSS−1. The identity for in-plane elasticity is iαβγδ =

1
2 (δαγδβδ + δαδδβγ), where δαβ is Kronecker symbol

(δαβ = 1 if α = β, δαβ = 0 otherwise).
The transpose operation t• is applied to any order tensors as follows:

(

tA
)

αβ...ψω
= Aωψ...βα.

Three contraction products are defined, the usual dot product (ã · b̃ = aibi), the double contraction
product (ã : b̃ = aijbji) and a triple contraction product (AAA ∴ BBB = AαβγBγβα). Einstein’s notation on
repeated indexes is used in these definitions. It should be noticed that closest indexes are summed together
in contraction products. Thus, ΦΦΦ · n = Φαβγnγ is different from n · ΦΦΦ = nαΦαβγ . The reader might easily
check that iii : iii = iii , iii ∴ iii = 3/2 δ and that iii · iii = iαβγδ iδǫζη is a sixth-order tensor. We recall also that resp.

a · b, ta : b and t
aaa ∴ bbb define inner products and associated norms on ❘2,

(

❘2
)2

and
(

❘2
)3
, respectively.

The derivation operator ∇̃ is also formally represented as a vector: ã ·∇̃ = aij∇j = aij,j is the divergence
and a ⊗∇ = aαβ∇γ = aαβ,γ is the gradient. Here ⊗ is the dyadic product.

Finally, the integration through the thickness is noted 〈•〉:
∫ h

2

−h
2

f(x3)dx3 = 〈f〉.

3. The 3D model

We consider a linear elastic plate of thickness h occupying the 3D domain Ω = ω×] − h/2, h/2[, where
ω ⊂ ❘2 is the mid-plane of the plate (Figure 1). Cartesian coordinates (x1, x2, x3) in the reference frame
(ẽ1, ẽ2, ẽ3) are used. The constitutive material is assumed to be invariant with respect to translations in
the (x1, x2) plane. Hence, the stiffness tensor C̃CC is a function of x3 only. The plate is loaded on its upper

and lower faces ω± = ω× {±h/2} with the distributed force T̃
±
. There are no body forces and the plate is

clamped on its lateral edge, ∂ω×]− h/2, h/2[ where ∂ω is the edge of ω.
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Figure 1: The Plate Configuration

The 3D problem P3D is summarized as follows:

P3D



































σ̃ · ∇̃ = 0 on Ω. (1a)

σ̃ = C̃CC(x3) : ε̃ on Ω. (1b)

σ̃ · ẽ3 = T̃
±

on ω±. (1c)

ε̃ =
1

2

(

∇̃⊗ ũ+ ũ⊗ ∇̃

)

on Ω. (1d)

ũ = 0 on ∂ω×]− h/2, h/2[. (1e)

where ũ is the 3D displacement vector field, ε̃ is the strain tensor field and σ̃ is the stress tensor field. It
is useful to recall the variational approach for the problem P3D. The sets of statically compatible stress
fields SC3D and kinematically compatible strain fields KC3D are introduced. SC3D is the set of stress fields
σ̃ which comply with equilibrium equation (1a) and boundary condition on the upper and lower faces of
the plate (1c). KC3D is the set of strain fields ε̃ which derive from a continuous displacement field ũ

(Equation 1d) and comply with boundary condition on the edge of the plate (1e).
The strain and stress energy density w3D and w∗3D are respectively given by:

w3D (ε̃) =
1

2
ε̃ : C̃CC : ε̃, w∗3D (σ̃) =

1

2
σ̃ : S̃SS : σ̃ (2)

They are related by the following Legendre-Fenchel transform:

w∗3D (σ̃) = sup
ε̃

{

σ̃ : ε̃− w3D (ε̃)
}

(3)

The kinematic variational approach states that the strain solution ε̃3D of P3D is the one that minimizes
P 3D among all kinematically compatible strain fields:

P 3D
(

ε̃3D
)

= min
ε̃∈KC3D

{

P 3D (ε̃)
}

(4)

where P 3D is the potential energy given by:

P 3D (ε̃) =

∫

Ω

w3D (ε̃) dΩ −

∫

ω

T̃
+
· ũ+ + T̃

−
· ũ−dω (5)
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and ũ± = ũ(x1, x2,±h/2) are the 3D displacement fields on the upper and lower faces of the plate.
The static variational approach states that the stress solution σ̃3D of P3D is the one that minimizes P ∗3D

among all statically compatible stress fields:

P ∗3D
(

σ̃3D
)

= min
σ̃∈SC3D

{

P ∗3D (σ̃)
}

(6)

where P ∗3D is the complementary potential energy given by:

P ∗3D (σ̃) =

∫

Ω

w∗3D (σ̃) dΩ (7)

Moreover, the following relation holds for the solution:

P 3D
(

ε̃3D
)

= −P ∗3D
(

σ̃3D
)

⇔ V 3D
ext = V 3D

int (8)

where the external work is:

V 3D
ext =

∫

ω

T̃
+
· ũ3D+ + T̃

−
· ũ3D−dω, (9)

and the internal work is:

V 3D
int =

∫

Ω

σ̃3D : ε̃3DdΩ. (10)

4. Revisiting the Reissner-Mindlin plate theory

4.1. Reissner-Mindlin statically compatible fields

This section recalls shortly the procedure for the derivation of Reissner-Mindlin equilibrium equations
(Reissner, 1945; Mindlin, 1951; Caron and Sab, 2001; Nguyen et al., 2005).

The generalized Reissner-Mindlin stresses associated to the 3D stress field σ̃ are:











Nαβ (x1, x2) = 〈σαβ〉 (11a)

Mαβ (x1, x2) = 〈x3σαβ〉 (11b)

Qα (x1, x2) = 〈σα3〉 (11c)

where N is the membrane stress, M the bending moment, and Q the shear forces.
Reissner-Mindlin equilibrium equations are obtained by integrating equations (1a) and x3×(1a) with

respect to x3 leading to:















〈σαβ,β〉+ [σα3]
h/2
−h/2 = 0

〈σα3,α〉+ [σ33]
h/2
−h/2 = 0

〈x3σαβ,β〉 − 〈σα3〉+ [x3σα3]
h/2
−h/2 = 0

Using boundary conditions (1c) yields:











Nαβ,β + pα = 0 (12a)

Qα,α + p3 = 0 (12b)

Mαβ,β −Qα + µα = 0 (12c)

where pi = T+
i + T−

i are symmetric loadings per unit surface and µi =
h
2 (T

+
i − T−

i ) are skew-symmetric
loadings per unit surface. More precisely, p = (pα) are membrane loadings per unit surface, p3 is the
out-of-plane loading per unit surface, µ = (µα) are couples per unit surface and µ3 is the transverse bulk
loading.
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Since in-plane loadings (p, µ) and out-of-plane loadings (p3, µ3) are not of the same order in the
asymptotic analysis of the plate as h/L goes to 0 (see Lewinski (1991c)), and for the sake of simplicity, we
focus only on the out-of-plane loading p3 (pα = µi = 0).

Finally, for clamped plates, SCRM is the set of statically compatible (N,M,Q) fields defined by:

(N,M,Q) ∈ SCRM ⇔











N ·∇ =  on ω (13a)

M ·∇−Q =  on ω (13b)

Q ·∇+ q3 = 0 on ω (13c)

4.2. Localization

The second step of the static approach consists in deriving the Reissner-Mindlin stress energy per unit
surface w∗RM (N,M,Q) from the 3D model. Then, the solution for the Reissner-Mindlin model is obtained
by minimizing the complementary potential energy P ∗RM =

∫

ω
w∗RMdω over all (N,M,Q) in SCRM .

As in many homogenization procedures, the derivation of w∗RM is based on an approximation scheme
for the real 3D stress fields in terms of Reissner-Mindlin stress fields:

σ̃RM (x1, x2, x3) = σ̃
(N)(x1, x2, x3) + σ̃

(M)(x1, x2, x3) + σ̃
(Q)(x1, x2, x3)

where σ̃(N), σ̃(M), and σ̃(Q) are 3D stress fields generated by N, M and Q as follows:















σ
(N)
ij = s

(N)
ijαβ(x3)Nαβ(x1, x2) (14a)

σ
(M)
ij = s

(M)
ijαβ(x3)Mαβ(x1, x2) (14b)

σ
(Q)
ij = s

(Q)
ijα (x3)Qα(x1, x2) (14c)

where s
(N)
ijαβ(x3), s

(M)
ijαβ(x3) and s

(Q)
ijα (x3) are localization tensors depending only on the x3 coordinate. This

can be rewritten using contraction products as:

σ̃RM = s̃ss
(N) : N + s̃ss

(M) :M + s̃ss
(Q) ·Q

Once this approximation of stress fields is set, the stress potential energy density w∗RM (N,M,Q) is
defined simply as the quadratic form:

w∗RM (N(x1, x2),M(x1, x2),Q(x1, x2)) =
1

2

〈

σ̃RM (x1, x2, x3) : S̃SS(x3) : σ̃
RM (x1, x2, x3)

〉

(15)

Hence, a consistent choice for s̃ss
(N), s̃ss

(M) and s̃ss
(Q) is critical.

4.2.1. Kirchhoff-Love fields

The derivation of s̃ss
(N) and s̃ss

(M) is based on the Kirchhoff-Love plate theory. This theory is the first
order of asymptotic expansion in the small parameter h/L (Ciarlet and Destuynder, 1979; Caillerie, 1984).
According to this theory, plane-stress is assumed and the in-plane part of the displacement is linear in x3:

uKLα = Uα − x3U3,α (16)

where Uα is the average in-plane displacement and U3 the average out-of-plane displacement (the deflection).
From this, the in-plane strains are derived as:

εKL =
1

2
(Uα,β + Uβ,α)− x3U3,αβ = e + x3κ (17)

where e is the membrane strain and κ the curvature at first order. We draw the reader’s attention to the
fact that strain components εi3 are not null in the general case.
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Membrane stress N and bending moments M are linearly dependent on e and κ:

{

N = AAA : e +BBB : κ (18a)

M = t
BBB : e +DDD : κ (18b)

with:
(AAA,BBB,DDD) =

〈(

1, x3, x
2
3

)

ccc(x3)
〉

(19)

Using 3D constitutive equation under plane-stress assumption, Kirchhoff-Love constitutive equation (18)
and in-plane strains definition (17), it is possible to express Kirchhoff-Love stress fields as functions of N
and M:







σ(N)(x1, x2, x3) = ccc(x3) :
(

aaa + x3
t
bbb

)

: N(x1, x2) and σ
(N)
i3 = 0 (20a)

σ(M)(x1, x2, x3) = ccc(x3) : (bbb + x3 ddd ) :M(x1, x2) and σ
(M)
i3 = 0 (20b)

where aaa, bbb and ddd are the reciprocal compliance tensors of the constitutive equation (18):

{

e = aaa : N + bbb :M (21a)

κ = t
bbb : N + ddd :M (21b)

Hence, for a homogeneous plate, Kirchhoff-Love stress fields are given by:











σ(N)(x1, x2, x3) =
1

h
N(x1, x2) and σ

(N)
i3 = 0 (22a)

σ(M)(x1, x2, x3) =
12x3

h3
M(x1, x2) and σ

(M)
i3 = 0 (22b)

4.2.2. Shear fields for a homogeneous plate

Let us recall the approach from Reissner (1945) for deriving σ̃(Q) in the case of a homogeneous monoclinic1

plate.
The main idea of the method is to recall that the shear forces are related to the bending moment through

the plate equilibrium (13b). In the previous section, 3D fields generated by a (x1, x2)-invariant bending

moment have been derived (Equation 22). IfM is invariant, we have σ̃(M) ·∇̃ = ̃. However, ifM is function

of x1 and x2, σ̃
(M) field is no more equilibrated and it comes directly: σ(M) ·∇ = 12x3

h3 (M ·∇) = 12x3

h3 Q.

f (Q) = 12x3

h3 Q appears as the body force generated by the bending moment variations and is directly

proportional to shear forces. Then σ̃(Q) is defined as the unique (x1, x2)-invariant stress field which balances

f (Q). This leads to the following auxiliary problem:







σ̃(Q) · ∇̃+ 12x3
Q̃

h3
= ̃, where Q3 = 0 (23a)

σ̃(Q) · ẽ3 = ̃ for x3 = ±h/2 (23b)

The (x1, x2)-invariant solution of this problem is:

σ
(Q)
α3 = −

∫ x3

−h
2

12z
Qα

h3
dz =

6

h3

(

h2

4
− x2

3

)

Qα, σ
(Q)
αβ = 0 and σ

(Q)
33 = 0

This is the original shear stress field derived by Reissner.

1The constitutive material is symmetric with respect to (x1, x2) plane. This assumption could be released but would
compromise the simplicity of the presentation.

7



4.2.3. Extension to laminates under cylindrical bending

When considering laminated plates, the approach described above does not work any more, because it
is not possible to bring out shear forces in (σ̃(M) · ∇̃). Whitney (1972) overcame this difficulty assuming the
plate is under cylindrical bending. This is equivalent to assuming: Q1 = M11,1, Q2 = M12,1, e22 = 0 and
χ22 = 0.

Whitney’s approach for deriving shear correction factors is still implemented in ABAQUS (2007) un-
der additional assumptions. Compared to exact solutions for cylindrical bending (Pagano, 1969, 1970b),
this method gives rather good approximation for overall deflection and shear stresses in laminated plates.
Eventually, it has also been generalized to functionally graded materials (Nguyen et al., 2007, 2008) and
heterogeneous plates (Cecchi and Sab, 2002, 2007), (Lebée and Sab, 2010c,d) and Isaksson et al. (2007).
However, how shear stress should be extended for more complex loadings than cylindrical bending (especially
involving torsion) is still an issue.

5. The Bending-Gradient plate theory

5.1. Fields generated by a linear variation of the bending moment

5.1.1. Stress field

Since with laminated plates it is not possible to bring out shear forces with Reissner’s approach, we
suggest considering a more general shear variable, the full bending gradient: RRR =M⊗∇ where the third-order
tensor Rαβγ respects Mαβ symmetries (Rαβγ = Rβαγ). This will release the cylindrical bending assumption
for laminated plates. In the following, we resume Section 4.2.2 procedure for deriving shear fields in the
case of laminated plates.

We have σ̃(M) · ∇̃ = 0 if M is (x1, x2)-invariant. When M is function of x1 and x2, we have:

σ̃(M) · ∇̃ = s
(M)
ijβα(x3)Mαβ(x1, x2)∇j = s

(M)
ijβαMαβ,γδjγ = s

(M)
iγβαRαβγ

Again f
(R)
i = s

(M)
iγβαRαβγ is the force per unit volume generated by first order variations of the bending

moment RRR. Using σ̃(M) definition (Equation 20b) and assuming that each layer follows monoclinic symmetry
we identify the force per unit volume as:

f (R) = ccc(x3) : (bbb + x3 ddd ) ∴ RRR and f
(R)
3 = 0 (24)

Then, we define σ̃(R) the 3D stress generated by a (x1, x2)-invariant bending gradient RRR associated to the

localization tensor s
(R)
ijαβγ such as σ̃(R) = s̃ss

(R)
∴ RRR. Like in the case of homogeneous plate, this stress field is

derived through the auxiliary problem:

{

σ̃(R) · ∇̃+ f̃
(R)

= ̃ (25a)

σ̃(R) · ẽ3 = ̃ for x3 = ±h/2 (25b)

The (x1, x2)-invariant solution of this problem is easily found, leading to the explicit determination of s̃ss
(R):

s
(R)
α3ηζǫ(x3) = −

∫ x3

−h
2

cαηγδ(z) (bδγǫζ + z dδγǫζ) dz , s
(R)
αβηζǫ = 0 and s

(R)
33ηζǫ = 0 (26)

NB : The integral in the determination of σ̃(R) enforces directly the continuity of shear stress distributions
and s̃ss

(R)(−h/2) = s̃ss
(R)(h/2) = 0 ensures the traction free boundary condition on the upper and lower faces

of the plate.
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5.1.2. Displacement field

Following a procedure similar to the one suggested by Whitney (1972) it is possible to derive a displace-
ment field related to the bending gradient RRR. Using the 3D constitutive equation 1b, the strain related to RRR
is written as:

ε
(R)
α3 =

Sαβ

2
σ
(R)
β3 , ε

(R)
αβ = 0 and ε

(R)
33 = 0 (27)

where S = Sαβ = 4Sα3β3 is the out-of-plane shear compliance tensor. Then, neglecting the variations of RRR,
it is possible to integrate this strain field and derive the following displacement field related to RRR:

u(R)
α =

(

∫ x3

−h
2

Sαζ(z)s
(R)
ζ3βγδ(z)dz + k

(R)
αβγδ

)

Rδγβ , u
(R)
3 = 0 (28)

where k
(R)
αβγδ is a fourth order tensor following one minor symmetry: k

(R)
αβγδ = k

(R)
αβδγ . kkk (R) is an integration

constant which is set by enforcing
〈

u
(R)
α

〉

= 0. Then, we introduce the displacement localization υ(R) by:

u(R) = υ(R)
∴ RRR, u

(R)
3 = 0 (29)

Finally ũ(R) is a continuous displacement field.

5.2. Compatible fields for the full bending gradient

In Section 5.1.1, we have derived a localization tensor s̃ss
(R) which depends on all bending gradient com-

ponents: Rαβγ = Mαβ,γ . Accordingly we define a new approximation of stress fields involving all bending
gradient components:

σ̃BG = σ̃(N) + σ̃(M) + σ̃(R)

and a new stress energy density similar to Definition 15:

w∗BG(N,M,RRR)

Actually σ̃BG approximation for 3D stress fields is a higher-order gradient theory, as described in Boutin
(1996) for 3D continuum and Buannic and Cartraud (2001a) for periodic beams. However, to be consistent
with higher-order theories, we should have taken into account the gradient of other static unknowns such as
the membrane stress gradient for instance. It is the choice of the authors in the present work to limit the
number of static variables only to those which have a contribution to the macroscopic equilibrium of the
plate. Thus the number of unknowns remains limited and adapted to engineering applications, contrary to
asymptotic expansions and other rigorous approaches in which no distinction is made between significant
static unknowns.

Now it is possible to design a complete plate model.

5.2.1. Bending gradient statically compatible fields

Generalized stress. The full bending gradient RRR has six components (R111, R221, R121, R112, R222, R122)
whereas Q has two components. Since only (N,M,Q) appeared in Reissner-Mindlin statically compatible
fields, SCRM , while integrating 3D equilibrium equation (1a) through the thickness in Section 4.1, using the
full bending gradient as static unknown introduces four static unknowns which a priori are not related to
plate equilibrium (13).

Let us derive generalized stresses associated to σ̃(R). Using Equation 26 and integrating by parts when
necessary leads to:

〈

σ
(R)
αβ

〉

= 0,
〈

x3σ
(R)
αβ

〉

= 0,
〈

s
(R)
α3βγδ

〉

= iαβγδ (30)

and we have:
〈

σ
(R)
α3

〉

= iii ∴RRR = Q. Only Q remains after integrating σ̃(R) through the thickness and the four

other static unknowns are self-equilibrated stress. These stresses are analogous to bimoment and warping
functions in the theory of beams under torsion from Vlasov (1961). More precisely we have:

R111 and R222 are the cylindrical bending part of shear forces Q1 and Q2, R121 and R122 are the torsion
part of shear forces and R112 and R221 are linked to strictly self-equilibrated stresses.
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R111 R221 R121 R112 R222 R122

σ13
〈

s
(R)
13111

〉

= 1
〈

s
(R)
13122

〉

= 0
〈

s
(R)
13121

〉

= 0
〈

s
(R)
13211

〉

= 0
〈

s
(R)
13222

〉

= 0
〈

s
(R)
13221

〉

= 1/2

σ23
〈

s
(R)
23111

〉

= 0
〈

s
(R)
23122

〉

= 0
〈

s
(R)
23121

〉

= 1/2
〈

s
(R)
23211

〉

= 0
〈

s
(R)
23222

〉

= 1
〈

s
(R)
23221

〉

= 0

Bending gradient equilibrium equations. Two observations lead to the definition of statically compatible
fields for the bending gradient SCBG. The first one is that we chose RRR such as M ⊗∇ = RRR in Section 5.1.1.
The second one is that we have Q = iii ∴RRR. Adapting SCRM fields (13) we suggest the following definition of
SCBG:

(N,M,RRR) ∈ SCBG ⇔











N ·∇ =  on ω (31a)

M ⊗∇− RRR = 000 on ω (31b)

iii ∴ RRR ·∇+ p3 = 0 on ω (31c)

5.2.2. Bending gradient kinematically compatible fields

Dual variables. Taking the derivative of w∗BG(N,M,RRR) with respect to each static unknown leads to the
following definition of dual variables:

e =
∂w∗BG

∂N
, χ =

∂w∗BG

∂M
, ΓΓΓ =

∂w∗BG

∂RRR
(32)

where e is associated to membrane strains and χ to curvatures. ΓΓΓ is a generalized shear strain. ΓΓΓ is a
third-order 2D tensor following RRR symmetry: Γβαγ = Γαβγ .

Internal work for the bending gradient plate model is accordingly written as:

V BG
int =

∫

ω

N : e +M : χ+ t
RRR ∴ ΓΓΓdω (33)

Dualization of bending gradient equilibrium equations. Since SCBG is defined, it is very classical to identify
kinematically compatible fields KCBG by integrating by parts the equilibrium equations (31) multiplied
with ad hoc test fields Ũ and ΦΦΦ, where Ũ(x1, x2) is a 3D vector and ΦΦΦ(x1, x2) a third-order 2D tensor
following RRR symmetry: Φβαγ = Φαβγ . Detailed computation is given in Appendix A.1. This leads to the
weak formulation of the plate theory:

V BG
int = V BG

ext

where

V BG
int =

∫

ω

N : (iii : (U ⊗∇)) +M : (ΦΦΦ ·∇) + t
RRR ∴ (ΦΦΦ+ iii ·∇U3) dω (34)

V BG
ext =

∫

ω

p3U3dω +

∫

∂ω

(N · n) ·U +M : (ΦΦΦ · n) + (iii ∴ RRR · n)U3dl (35)

and n is the in-plane unit vector outwardly normal to ω.
Dual strains are identified in V BG

int as:

e = iii : (U ⊗∇) , χ = ΦΦΦ ·∇, ΓΓΓ = ΦΦΦ+ iii ·∇U3 (36)

where ΦΦΦ is a generalized rotation and e is exactly the Kirchhoff-Love membrane strain. Since we have
assumed the plate is clamped, there is no external work on the edge ∂ω in V BG

ext (Equation 35). This leads
to the following condition on Ũ and ΦΦΦ for clamped edges:

ΦΦΦ · n =  on ∂ω, Ũ = ̃ on ∂ω
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The above remarks enable us to define the set of kinematically compatible fields KCBG for clamped
plates:

(e,χ,ΓΓΓ) ∈ KCBG ⇔



























e = iii : (U ⊗∇) on ω (37a)

χ = ΦΦΦ ·∇ on ω (37b)

ΓΓΓ = ΦΦΦ+ iii ·∇U3 on ω (37c)

ΦΦΦ · n =  on ∂ω (37d)

Ũ = ̃ on ∂ω (37e)

Localization of displacement. Assuming ΓΓΓ = 0 inKCBG leads to ΦΦΦ = −iii ·∇U3 and therefore χαβ = Φαβγ∇γ =
−U3,αβ = καβ coincides with the Kirchhoff-Love definition of curvatures. It is then possible to rewrite the
Bending-Gradient curvature as the sum of two terms, χ = κ+ΓΓΓ ·∇, the first order Kirchhoff-Love curvature
and the second order contribution of the generalized shear strains ΓΓΓ. Based on this observation, we suggest
the following definition of in-place displacement localization fields:

uBG = U − x3∇U3 + υ(R)
∴❋❋❋ ∴ ΓΓΓ (38)

where ❋❋❋ is the generalized shear stiffness introduced in next section. This definition clearly separates first
order and second order contributions to in-plane displacement.

5.3. Bending gradient constitutive equations

We have just derived statically and kinematically compatible fields. There remains to derive constitutive
equations to get a complete plate theory.

5.3.1. Bending gradient stress energy density

A detailed analysis dedicated to material symmetries is provided in Appendix A.2. The main result is
that material symmetry of the plate constituents with respect to (x1, x2) plane uncouples Kirchhoff-Love
(M,N) and shear unknowns (RRR). Since this is true for almost all laminated plates of interest, we restrict the
analysis to this case. This means that the energy density can be written as the sum of two terms:

w∗BG = w∗BG,KL(N,M) + w∗BG,RRR (RRR)

According to Definition 15, the shear part of the stress energy density is:

w∗BG,RRR(RRR) =
1

2

∫ h
2

−h
2

t(

s̃ss
(R)

∴ RRR

)

: S̃SS(x3) :
(

s̃ss
(R)

∴ RRR

)

dx3 =
1

2
t
RRR ∴ ❢❢❢ ∴ RRR (39)

where:

❢❢❢ =

〈

t(

s̃ss
(R)
)

: S̃SS(x3) : s̃ss
(R)

〉

(40)

Inserting s̃ss
(R) (Equation 26) into ❢❢❢ definition leads to:

❢αβγδǫζ =

∫ h
2

−h
2

4s
(R)
φ3γβα(x3)Sφ3ψ3(x3)s

(R)
ψ3δǫζ(x3)dx3 (41)

which becomes:

❢❢❢ =

∫ h
2

−h
2

(

∫ x3

−h
2

(

t
bbb + z ddd

)

: ccc(z)dz

)

· S(x3) ·

(

∫ x3

−h
2

ccc(z) : (bbb + z ddd ) dz

)

dx3 (42)

where S = Sαβ = 4Sα3β3 is the out-of-plane shear compliance tensor.
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The generalized shear compliance ❢❢❢ is a sixth-order tensor, with two symmetries. The major symmetry:
t
❢❢❢ = ❢❢❢ and the minor symmetries: ❢αβγδǫζ = ❢βαγδǫζ . The identity for these tensors is: ■αβγδǫζ = iαβǫζ δγδ.
❢❢❢ definition ensures symmetry and positiveness. However, ❢❢❢ is not always definite since four static degrees
of freedom are self-equilibrated stress (like warping is degenerated in the torsion of a beam with a circular
section). More details about ❢❢❢ kernel is given in Appendix A.3.

Once the stress energy density is defined, it is straightforward to derive the constitutive equation:

ΓΓΓ =
∂w∗BG

∂RRR
= ❢❢❢ ∴ RRR (43)

5.3.2. Bending gradient strain energy density

The strain energy density is defined through the Legendre-Fenchel transform. Thus it necessitates the
definition of ❢❢❢ inverse. As indicated previously, ❢❢❢ is not always definite. This is the case for a homogeneous
plate. Yet it is possible to be more explicit about ❢❢❢ inverse.

The generalized shear compliance ❢❢❢ maps symmetric third-order tensors on its image:

❢❢❢ : RRR ∈
(

❘2
)3

7−→ ❢❢❢ ∴ RRR = ΓΓΓ ∈ Im (❢❢❢) ⊆
(

❘2
)3

In order to define an inverse for ❢❢❢ we introduce the Moore-Penrose pseudo inverse ❋❋❋ defined as

❋❋❋ = lim
κ→0

(❢❢❢ ∴ ❢❢❢ + κ■■■)
−1

∴ ❢❢❢

For instance ( λ 0
0 0 ) pseudo inverse is

(

1/λ 0
0 0

)

. With this definition we have:

❋❋❋: ΓΓΓ ∈
(

❘2
)3

7−→ ❋❋❋ ∴ ΓΓΓ = RRR ∈ Im (❋❋❋) ⊆
(

❘2
)3

Hence ❋❋❋ ∴ ❢❢❢ is the orthogonal projector onto Im (❋❋❋) and ■■■− ❢❢❢ ∴❋❋❋ is the orthogonal projector onto Ker (❋❋❋).
Defining an inverse relation for ❢❢❢ imposes to restrain ❋❋❋ domain to Im (❢❢❢): (■■■− ❢❢❢ ∴❋❋❋)∴ΓΓΓ = 000. Thus there is
an internal constraint over generalized shear strains ΓΓΓ when ❢❢❢ is not positive definite. Finally, we have the
equivalence:

{

ΓΓΓ = ❢❢❢ ∴ RRR

(■■■− ❢❢❢ ∴❋❋❋) ∴ ΓΓΓ = 000
⇔

{

RRR = ❋❋❋ ∴ ΓΓΓ+ RRR
k

❋❋❋ ∴ ❢❢❢ ∴ RRR
k = 000

(44)

This enables the definition of the shear part of the strain energy density, using the Legendre-Fenchel
transform:

wBG,ΓΓΓ(ΓΓΓ) =
1

2
t
ΓΓΓ ∴❋❋❋ ∴ ΓΓΓ for ΓΓΓ such that (■■■− ❢❢❢ ∴❋❋❋) ∴ ΓΓΓ = 000 (45)

5.4. Summary of the Bending gradient plate model

Let us summarize all the definitions introduced for the new plate model.
The set of kinematically compatible fields is:

(e,χ,ΓΓΓ) ∈ KCBG ⇔



























e = iii : (U ⊗∇) on ω (46a)

χ = ΦΦΦ ·∇ on ω (46b)

ΓΓΓ = ΦΦΦ+ iii ·∇U3 on ω (46c)

ΦΦΦ · n =  on ∂ω (46d)

Ũ = ̃ on ∂ω (46e)

where e is the conventional in-plane plate strain, χ is the curvature, ΓΓΓ is the generalized shear strain and ΦΦΦ

is the generalized rotation. These fields are almost identical to Reissner-Mindlin kinematically compatible
fields but the rotation vector is replaced by the generalized third-order rotation tensor ΦΦΦ. Assuming ΦΦΦ = iii ·ϕ
in 46, where ϕ is a vector representing rotations leads to Reissner-Mindlin-like kinematics: χ = iii : (ϕ⊗∇)
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and ΦΦΦ · n = 0 ⇔ ϕ = 0. Thus in the general case, Reissner-Mindlin kinematics can be interpreted as a
restriction of ΦΦΦ to iii ·ϕ.

The set of statically compatible fields is

(N,M,RRR) ∈ SCBG ⇔











N ·∇ =  on ω (47a)

M ⊗∇∇∇− RRR = 000 on ω (47b)

(iii ∴ RRR) ·∇ = −p3 on ω (47c)

where N is the membrane stress, M is the bending moment and RRR the gradient of the bending moment. This
set of equations is almost identical to Reissner-Mindlin equations where shear forces have been replaced by
the bending gradient RRR.

Finally, for constitutive material following local monoclinic symmetry with respect to (x1, x2) plane
(uncoupling between RRR and (N,M)) the Bending-Gradient plate constitutive equations write as:











N = AAA : e +BBB : χ (48a)

M = t
BBB : e +DDD : χ (48b)

ΓΓΓ = ❢❢❢ ∴ RRR, where (■■■− ❢❢❢ ∴❋❋❋) ∴ ΓΓΓ = 0 (48c)

The solution of the plate model must comply with the three sets of equations (46, 47, 48).
We recall also variational approaches for the model: solving the static approach of Bending-Gradient

consists in finding the set of statically compatible fields (N,M,RRR)BG which minimizes the complementary
potential energy:

P ∗BG
(

(N,M,RRR)BG
)

= min
(N,M,RRR)∈SCBG

{

P ∗BG (N,M,RRR)
}

(49)

where P ∗BG, the complementary potential energy of the bending gradient plate problem PBG is written as:

P ∗BG (N,M,RRR) =

∫

ω

w∗BG (N,M,RRR) dω (50)

Again, the strain potential energy of PBG is:

PBG(e,χ,ΓΓΓ) =

∫

ω

wBG(e,χ,ΓΓΓ)− p3U3dω (51)

and solving the kinematic approach of PBG consists in finding the set of kinematically compatible fields
(e,χ,ΓΓΓ)BG which minimizes the strain potential energy under the kinematic constraint (■■■− ❢❢❢ ∴❋❋❋) ∴ ΓΓΓ = 000:

PBG
(

(e,χ,ΓΓΓ)BG
)

= min
(e,χ,ΓΓΓ)∈KCBG

(■■■−❢❢❢∴❋❋❋)∴ΓΓΓ=000

{

PBG (e,χ,ΓΓΓ)
}

(52)

Note that the model presented in this paper for clamped plates can be extended to other boundary
conditions as detailed in Appendix A.4.

6. Bending-Gradient or Reissner-Mindlin plate model?

6.1. Homogeneous plate

For a homogeneous plate, the body force becomes

f (R) =
12x3

h3
iii ∴ RRR and f

(R)
3 = 0 (53)

and the bending-gradient localization is

s
(R)
α3βγδ(x3) =

6

h3

(

h2

4
− x2

3

)

iαβγδ, s
(R)
αβγδǫ = 0 and s

(R)
33γδǫ = 0 (54)
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which is exactly the same result as the one from Reissner derived in Section 4.2.2. Moreover, the generalized
shear compliance is:

❢❢❢ =
6

5h
iii · S · iii (55)

and the shear stress energy is:

w∗BG,RRR (RRR) =
1

2
t
RRR ∴ iii ·

6

5h
S · iii ∴ RRR (56)

Since Q = iii ∴ RRR, it is possible to identify there the Reissner-Mindlin stress energy density as:

w∗RM,Q(Q) =
1

2
tQ ·

6

5h
S ·Q

which leads to the Reissner-Mindlin constitutive equation:

Q =
5h

6
S−1 · γ

where γ stands here for Reissner-Mindlin plate shear strain. This is the result from Reissner (1945) which
exhibits the well-known shear correction factor kα = 5/6. It is furthermore demonstrated in Appendix A.5
that boundary conditions are also identical.

Finally, for homogeneous plates, the Reissner-Mindlin model and the Bending-Gradient model are com-
pletely identical.

Moreover, the displacement field suggested in Section 5.2.2 becomes:

uBG = U − x3∇U3 +
5

4

(

x3 −
4x3

3

3h2

)(

2

3
iii ∴ ΦΦΦ+∇U3

)

(57)

Identifying ϕ = 2
3 iii ∴ ΦΦΦ, this is rewritten as:

uBG = U + x3ϕ+

(

x3

4
−

5x3
3

3h2

)

γ (58)

with γ = ϕ +∇U3. This displacement field is very similar to the one chosen by Reddy (1984) in order to
build a higher order plate theory. However, in the present case, the second order term in γ involves not only
a cubic function of x3 but also a linear term. This illustrates that refinements in displacement fields does
not necessarily follow a Taylor expansion, contrary to many suggestions (Reddy, 1989; Altenbach, 1998).

6.2. Projection of the Bending-Gradient plate model

Since in some cases, the Bending-Gradient is turned into a Reissner-Mindlin plate model, we need a
means to estimate the difference between both plate models. For this, we define the projection of the
Bending-Gradient model on a Reissner-Mindlin model.

The shear forces energy density in the case of a Reissner-Mindlin plate model writes as:

w∗RM,Q (Q) =
1

2
tQ · f RM ·Q (59)

Since Q = iii ∴ RRR, this stress energy becomes in Bending-Gradient plate model:

w∗BG,RRR (RRR) =
1

2
t
RRR ∴ iii · f RM · iii ∴ RRR (60)

Thus a Reissner-Mindlin compliance f RM is expressed in the Bending-Gradient exactly as for a homogeneous
plate (Equation 55):

❢❢❢RM = iii · f RM · iii (61)
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Then, we define the orthogonal projection of a Bending-Gradient compliance tensor ❢❢❢ on a Reissner-
Mindlin compliance tensor f RM . For this, we introduce the following inner product:

❢αβγδǫζ❣αβγδǫζ =
t
❢❢❢ ::: ❣❣❣ (62)

and the related norm:
‖❢❢❢‖ =

√

t
❢❢❢ ::: ❢❢❢ (63)

We define ❢❢❢RM the Reissner-Mindlin part of ❢❢❢ as the projection of ❢❢❢ on the linear subspace of tensors
writting as ❣❣❣RM = iii · gRM · iii :

∀❣❣❣RM ,
t(

❢❢❢ − ❢❢❢RM
)

::: ❣❣❣RM = 0 (64)

which is equivalent to:

∀gRM , t f RM : gRM =
t((

2

3
iii

)

∴ ❢❢❢ ∴

(

2

3
iii

))

: gRM (65)

Thus

f RM =

(

2

3
iii

)

∴ ❢❢❢ ∴

(

2

3
iii

)

(66)

defines the projection of ❢❢❢ on Reissner-Mindlin plate model and the Reissner-Mindlin part of ❢❢❢ is:

❢❢❢RM =

(

2

3
iii · iii

)

∴ ❢❢❢ ∴

(

2

3
iii · iii

)

(67)

The projection f RM of ❢❢❢ is equivalent to assuming RRR = 2
3 iii ·Q in w∗BG,RRR (Equation 39). Actually it is possible

to give further mechanical interpretation of this result. Let us consider the following change of generalized
shear static variables:

Qα = Rαββ , ∆Q1 = R111 − 2R122, ∆Q2 = 2R121 − R222, R112 and R221 (68)

In that case the four self-equilibrated static unknowns are ∆Q1, ∆Q2, R112, and R221. They are clearly set
apart from shear forces Qα. Setting to zero pure warping unknowns in order to keep only ”pure shear forces“
leads exactly to RRR = 2

3 iii ·Q. From this, ❢❢❢RM can be considered as the restriction of ❢❢❢ when setting warping
unknowns to zero. Consequently, we introduce the pure warping part of ❢❢❢ as the orthogonal complement of
❢❢❢RM :

❢❢❢W = ❢❢❢ − ❢❢❢RM (69)

Finally we suggest the following relative distance between the Bending-Gradient plate model and the
Reissner-Mindlin one:

∆RM/BG =
‖❢❢❢W‖

‖❢❢❢‖
(70)

∆RM/BG gives an estimate of the pure warping fraction of the shear stress energy and can be used as a
criterion for assessing the need of the Bending-Gradient model. When the plate constitutive equation is
restricted to a Reissner-Mindlin one, we have exactly ∆RM/BG = 0.

As illustration, we derived ∆RM/BG for angle-ply laminates which were considered by Pagano (1970a).
Each ply is made of unidirectional fiber-reinforced material oriented at θ relative to the direction x1. All
plies have the same thickness and are perfectly bounded. A laminate is denoted between brackets by the
successive ply-orientations along the thickness. For instance [0◦, 90◦] denotes a 2-ply laminate where the
lower ply fibers are oriented in the bending direction. The constitutive behavior of a ply is assumed to be
transversely isotropic along the direction of the fibers and engineering constants are chosen similar to those
of Pagano (1969):

EL = 25× 106psi, ET = EN = 1× 106psi, GLT = GLN = 0.5× 106psi,
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GNT =
ET

2(1 + νNT )
= 0.4× 106psi, νLT = νLN = νNT = 0.25

where GNT has been changed to preserve transversely isotropic symmetry. L is the longitudinal direction
oriented in the (x1, x2) plane at θ with respect to ẽ1, T is the transverse direction and N is the normal
direction coinciding with ẽ3

On Figure 2, ∆RM/BG is plotted for any 2-ply configuration and on Figure 3, for any 4-ply symmetric
configurations. It appears clearly that ∆RM/BG, is not negligible (up to 37%). Thus, neglecting warping
with a simple Reissner-Mindlin plate model applied to such laminates can lead up to 37% error in the shear
stress energy and therefore in the second order deflection.
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Figure 2: Relative distance between the Reissner-Mindlin and the Bending-Gradient plate models ∆RM/BG for any 2-ply
configuration

7. Conclusion

In this work, applying Reissner’s approach for deriving transverse shear stress to a laminated plate
revealed that more static shear DOF than the usual shear forces are involved in microscopic fields. Thanks
to conventional variational tools, this led to the design of a new higher-order gradient plate theory involving
the gradient of the bending moment, instead of shear forces. Statically and kinematically compatible fields as
well as constitutive equations were derived. The mechanical meaning of the bending gradient was identified as
self-balanced static unknowns associated to warping functions in addition to usual shear forces. The present
plate theory does not require any specific constitutive material symmetry and the monoclinic symmetry with
respect to plane of ẽ3 normal was introduced only for convenience. We demonstrated also that the Bending-
Gradient plate model is the exact extension to laminated plates of the Reissner-Mindlin model originally
proposed for homogeneous plates. Finally, we will show in an upcoming paper that the Bending-Gradient
model can be used for a higher order homogenization of in-plane periodic plates.

In the second part of this work (Lebée and Sab, 2010a), comparison between models is performed in the
cylindrical bending case which makes use of only closed-form solutions. It will be demonstrated that the
Bending Gradient model contains most of the relevant aspects of shear effects with very little computation
and simple interpretation. The main conclusion is that the Bending-Gradient gives good predictions of both
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Figure 3: Relative distance between the Reissner-Mindlin and the Bending-Gradient plate models ∆RM/BG for any symmetric
4-ply configuration

deflection and shear stress distributions in many material configuration and provided the plate follows mirror
symmetry (BBB = 000), the Bending-Gradient solution converges to the exact solution when the slenderness ratio
h/L goes to 0 faster than other models based on Reissner-Mindlin equations.

A. Appendix

A.1. Dualization

Multiplying 31a with Uα and integrating by parts on the plate domain ω yield:

∫

ω

Nαβ
1

2
(Uα,β + Uβ,α) dω =

∫

∂ω

NαβnβUαdl (71)

where nα is the outer normal to ∂ω.
Multiplying 31c with U3 and integrating by parts on the plate domain ω yield:

∫

ω

RαββU3,αdω =

∫

∂ω

RαββnαU3dl +

∫

ω

p3U3dω (72)

Multiplying 31b with Φαβγ and integrating by parts on the plate domain ω yield:

∫

ω

MαβΦαβγ,γ + RαβγΦαβγdω =

∫

∂ω

MαβΦαβγnγdl (73)

Adding all relations developed above leads to the following expression which is separated into three parts:

∫

ω

Nαβ
1

2
(Uα,β + Uβ,α) +MαβΦαβγ,γ + Rαβγ

(

Φαβγ +
1

2
(δβγU3,α + δαγU3,β)

)

dω =

∫

ω

p3U3dω +

∫

∂ω

NαβnβUα +MαβΦαβγnγ + RαββnαU3dl

(74)
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A.2. Symmetries

First, we derive N, M and RRR transformation formulas through orthogonal transformations.

Consider a 3D orthogonal transformation P̃ such as x̃† = P̃ · x̃ is the image of x̃, (
t

P̃ · P̃ = δ̃ and
det P̃ = ±1). A stress field σ̃ has the image σ̃† given by:

σ̃† (x̃) = P̃ · σ̃
(

t

P̃ · x̃
)

·
t

P̃

The analysis is restricted to planar transformations:

P̃ =





P
0
0

0 0 P33=±1





where P is a 2D orthogonal matrix. Then we have:

N† (x) =
〈

σ† (x, x3)
〉

= P ·

∫ h
2

−h
2

σ
(

tP · x,P33x3

)

dx3 ·
tP = P ·

∫

P33
h
2

−P33
h
2

σ
(

tP · x, y3
) dy3
P33

· tP

This equation does not depend on P33 sign. Thus we obtain:

N† (x) = P ·

∫ h
2

−h
2

σ
(

tP · x, x3

)

dx3 ·
tP = P ·N

(

tP · x
)

· tP

The same approach leads to the following equation for the bending moment:

M† (x) = P33P ·M
(

tP · x
)

· tP

We have also, RRR =M ⊗∇. Thus taking the gradient of the previous equation leads to:

R
†
αβγ (xη) = P33PαδPβǫPγζRδǫζ (Pθηxθ)

When P̃ is diagonal, the above transformation equations simplify. For instance, we have:

M
†
αβ (x) = ǫP̃

Mαβ
Mαβ

(

tP · x
)

where ǫP̃
Mαβ

= ±1 is the symmetry index of Mαβ with respect to P̃ . For instance ǫP̃
Nαβ

= 1 indicates that

Nαβ is symmetric with respect to P̃ and ǫP̃Rαβγ
= −1 indicates that Rαβγ is skew-symmetric with respect to

P̃ . Finally, it is possible to use all the previous transformation equations to derive the transformation of the
stress energy. In the case P̃ reflects a material symmetry, this energy remains invariant. As a consequence,
two components having opposite symmetry indexes with respect to P̃ are uncoupled

Table 1 summarizes symmetry indexes for three main symmetries. A major observation is that material
invariance through π rotation around ẽ3 axis (case a) ensures uncoupling between shear degrees of freedom
RRR and Love Kirchhoff degrees of freedom N, and M. A plate where for all values of x3 the local behavior
is symmetric with respect to (x1, x2) plane fulfills the π rotation around ẽ3 symmetry. Thus, uncoupling
between N,M and RRR holds true also for any kind of laminated plate provided the local constitutive behavior
is monoclinic relative to (x1, x2) plane (which is the case for fibrous plies).

A.3. Kernel properties of the generalized-shear compliance

In this section we demonstrate that ❋❋❋ ∴ ❢❢❢ ∴ iii = iii and ❢❢❢ ∴ ❋❋❋ ∴ iii = iii , where ❋❋❋ is Moore-Penrose pseudo
inverse. This ensures that the internal constraint (■■■− ❢❢❢ ∴❋❋❋) ∴ ΓΓΓ = 000 is equivalent to ΦΦΦ = ❢❢❢ ∴❋❋❋ ∴ ΦΦΦ.

Proof: Since
〈

σ
(R)
α3

〉

= Qα, then, σ̃
(R) is not uniformly zero through the thickness and w∗BG,RRR(RRR) > 0.

Thus:
iii ∴ RRR 6=  ⇒ w∗BG,RRR(RRR) > 0 (75)
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P̃ N11 N22 N12 M11 M22 M12 R111 R221 R121 R112 R222 R122

a)
(

−1 0 0

0 −1 0

0 0 1

)

+ + + + + + – – – – – –

b)
(

1 0 0

0 1 0

0 0 −1

)

+ + + – – – – – – – – –

c)
(

1 0 0

0 −1 0

0 0 1

)

+ + – + + – + + – – – +

Table 1: ǫP̃ and loads for three main invariances

Let us define: RRR∗ = 2
3 iii ·Q, Q 6= . We have iii ∴RRR

∗ = Q and then RRR
∗ /∈ Ker (❢❢❢). Since ❋❋❋∴ ❢❢❢ is the projector

on the orthogonal complement of ❢❢❢ kernel, we have:

∀Q, ❋❋❋ ∴ ❢❢❢ ∴ iii ·Q = iii ·Q

which is the first expected result. The second result is straightforward when noticing that ❢❢❢ and ❋❋❋ have the
same kernel: since ❢❢❢ and ❋❋❋ are diagonalizable, we have:

RRR ∈ Im (❢❢❢)

⇔ RRR =
∑

i

RRRi and ❢❢❢ ∴ RRR =
∑

i

λiRRRi, ∀i, λi 6= 0

⇔ RRR =
∑

i

RRRi and ❋❋❋ ∴ RRR =
∑

i

RRRi/λi, ∀i, λi 6= 0

⇔ RRR ∈ Im (❋❋❋)

A.4. Mixed boundary conditions

The edge is separated into two parts: ∂ωk where generalized strains (Ũ
d
,Hd) are enforced and ∂ωs where

generalized stress (V d,Md) are enforced. Ũ
d
is the forced displacement on the edge, Hd is a symmetric

second-order tensor related to a forced rotation on the edge, V d is the force per unit length enforced on the
edge and Md is the full bending moment enforced on the edge

A.4.1. Kinematically compatible fields

We define Bending-Gradient kinematically compatible fields for mixt boundary condition plates as:

(e,χ,ΓΓΓ) ∈ KCBG ⇔































e = iii : (U ⊗∇) on ω (76a)

χ = ΦΦΦ ·∇ on ω (76b)

ΓΓΓ = ΦΦΦ+ iii ·∇U3 on ω (76c)

ΦΦΦ · n = Hd on ∂ωk (76d)

Ũ = Ũ
d
on ∂ωk (76e)

The potential energy is:

PBG(e,χ,ΓΓΓ) =

∫

ω

wBG(e,χ,ΓΓΓ)− p3U3dω −

∫

∂ωs

V d ·U +Md : (ΦΦΦ · n) + V d
3 U3dl (77)
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A.4.2. Statically admissible fields

Bending-Gradient statically compatible fields for mixt boundary condition are:

(N,M,RRR) ∈ SCBG ⇔







































N ·∇ = −p on ω (78a)

M ⊗∇∇∇− RRR = 0 on ω (78b)

iii ∴ RRR ·∇ = −p3 on ω (78c)

N · n = V d on ∂ωs (78d)

M =Md on ∂ωs (78e)

iii ∴ RRR · n = V d
3 on ∂ωs (78f)

NB : Having M · t =Md · t on ∂ωs, where t is orthogonal to n looks unnatural since it involves stresses that
do not belong to the edge surface. It is a fourth boundary condition common to higher-order models and
related to free edge effects similar to those described in Lebée and Sab (2010b).

The complementary energy is:

P ∗BG(N,M,RRR) =

∫

ω

w∗BG(N,M,RRR)dω +

∫

∂ωk

(N · n) ·Ud +M : Hd + (RRR ∴ iii · n)Ud
3 dl (79)

A.5. Degenerated boundary conditions in the homogeneous case

The pseudo inverse in homogeneous case is easy to find:

❋❋❋ =
5h

6

4

9
iii · S−1 · iii (80)

and ❢❢❢∴❋❋❋ = 2
3 iii ·iii . The generalized shear strain, solution of PBG fulfils (■■■− ❢❢❢ ∴❋❋❋)∴ΓΓΓ = 0, which is equivalent

to: ΦΦΦ = 2
3 iii · iii ∴ ΦΦΦ (see Appendix A.3). Then it is possible to rewrite the work of M on the edges ∂ω:

M : (ΦΦΦ · n) = (M · n) ·

(

2

3
iii ∴ ΦΦΦ

)

which is identical to the Reissner-Mindlin work on the edge ∂ω where the rotation pseudo-vector is ϕ = 2
3 iii∴ΦΦΦ.
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