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Abstract

The durability of concrete materials with regard to eadyg@olume changes and cracking phenomena depends on thé@volf
the poroelastic properties of cement paste. The abilityngfreeers to control the uncertainty of the percolationghodd and the
evolution of the elastic modulus, the Biot-Willis paranredad the skeleton Biot modulus is key for minimizing the \arkbility
of concrete structures at early-age. This work presentgnaliresults on the uncertainty propagation and the deitgianalysis
of a multiscale poromechanics-hydration model for cemestgs of water-to-cement ratio between 0.35 and 0.70. Nothie
proposed approach provides poroelastic properties redjtirmodel the behavior of partially saturated aging cerpastes €.g.
autogenous shrinkage) and it predicts the percolatiosttiold and undrained elastic modulus in good agreement witeranental
data. The development of a stochastic metamodel using polial chaos expansions allows to propagate the uncesgaiofi
kinetic parameters of hydration, cement phase composiglaistic moduli and morphological parameters of the micvasure.
The presented results show that the propagation does naiifptige uncertainty of the single poroelastic propertiisaugh, their
correlation may amplify the variability of the estimatedaibed from poroelastic state equations. In order to retheeeancertainty
of the percolation threshold and that of the poroelastipprties at early-age, engineers need to assess more atgthatapparent
activation energy of calcium aluminate and, later on, ofdlaestic modulus of low density calcium-sillicate-hydrate

Keywords: Microporomechanics, Global sensitivity analysis, Solvaliance decomposition, Elastic modulus, Biot-Willis
parameter, Percolation threshold, Cement paste

1. Introduction model the evolution of the elastic modulus and Poissonis rat
of hydrating concrete materials by means of micromechanics
In poroelastic media such as concrete materials [1], the de]:hey proposed a hydration model and described the aging pro-
velopment of internal stresses due to drying and autogenouysess by an evolution of the relative volumetric proportiohs
shrinkage and the risk of cracking significantly depend @n th elementary phases with invariant mechanical propertiesilen
evolution of the poroelastic properties [2-4]. The abitfyen-  providing good results for mid- to late-stages of hydratibis
gineers to predict and control the variability of the peatin  model lacked of precision at very early-age. Later on, Sajaah
threshold, the elastic modulus, the Biot-Willis parameted et al. [15, 16] studied the impact of the shape of solid hyefrat
the skeleton Biot modulus is of prime importance to minimizegn the prediction of the solid percolation threshold anceilas-
the risk of cracking of concrete structures at early-age. tic modulus of aging cement pastes. However, portlandite an

Recently, continuum micromechanics models have been usegringite were not considered among the hydration praohest
in many successful assessments of tffiective mechanical sponsible for setting in the model.

properties of hardened cement-based materials [5-8]. ¥he e

tension of these models to take into account the poroelastic ~ The input parameters of these deterministic models can be
havior of concrete materials [1, 9, 10] introduced severaded  classified into four categories: the initial phase quaretifon,
applications [11-14]. At early-age, the microstructurelegs  the kinetic parameters of hydration, the invariant elagstmp-

due to the hydration of anhydrous cement particles and addgrties and the microstructufadorphological parameters. This
tional chemical reactions. Bernard et al. [6] were the fiost t information is uncertain and, as a consequence, the model re
sponses can be considered as random variables. Berveiller e
al. [17] first propagated uncertainty through a multistep mi
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the polynomial expansions for much less calculation thaatwh
is required by Monte-Carlo simulation. Later on, Sudretlet a
[18] used polynomial chaos expansions as stochastic metamo
els in order to assess the full randomness of elastic priepert

Table 1: Major oxides composition of cement PCCB9402 [20]

Oxyde Mass fraction [%]

at different scales of hardened concrete and perform sensitivity g:iocz) 2616 625
analyses from scale to scale. However, a sensitivity aisabfs Fe,0 0 '29
the poroelastic properties of cement paste over time hagatot Al 202 4'17
been accomplished. SO 3.54

The purpose of this work is threefold: first, to provide a de-
terministic multiscale poromechanics-hydration modepte-
dict the evolution of the Biot-Willis parameter, the skeleBiot
modulus, the Poisson’s ratio, the elastic modulus and the pejstry those are refered to ag%, GS, GA and GAF where
colation threshold; second, to improve the agreement l&twe ¢ — ca0, A= Al,Os, F = F&0s, S=SO; and H= H,O so
the prediction of the elastic modulus and experimental data {hat GS = 3Ca0- SiO, and so on. An amount of gypsum
considering the féect of the shape of ettringite and portlandite (cSH,) about 5% of the total mass of the system is usually
particles on setting; third, to assess the uncertaintyesdtpre-  54ded to these phases by cement producers.
dictions at diferent stages of hydration and identify their great-  geyeral methods can be used to determine the phase compo-
est contributors among the input parameters. The origyali  jion ysing the stoichiometry of those compounds and the re
this work relies on the application of a non-intrusive metho gpective amounts of the former oxides. The approach adopted
of uncertainty propagation to a microporomechanics-yana i, this study is a widely used method developped by Bogue
model for cement pastes in order to assess the contribution $2]. It consists in a linear system of equations based oraaqu

the material parameters to the variability of the macrogcop jiative oxide composition (see Table 1) under certain @gsu
poroelastic properties over time. For the first time, thiskvo 5

presents the second central moment of the Biot-Willis param
ter and the Biot skeleton modulus as functions of time. e the main phases of the cement ar¢gSCGS, GA and

The uncertainty propagation is performed by polynomial  C,AF, to which are added some gypsum and free lime;
chaos expansion of the random model responses [19]. This ap-

proach has the advantage to give access to sensitivityniafor e all the FeOs present in the system occurs agAF;
tion and to allow the computation of large samples of predic-

tions for much less calculation than required by Monte-Garl e the remaining amount of AD3 occurs as @A,
The paper is organized as follows: firstly, the materialgstu
ied in this work are presented; secondly, the deterministit e the CaO occurs either ag&, GS, free lime or gypsum.

tiscale poromechanics-hydration model is introduceddtii

the polynomial chaos expansion and the post-processing are The mathematical formulation of the Bogue calculation is
explained; fourthly, the uncertainties of the input partere well documented and can be found in the book of Taylor [23].
are described; fifthly, the model is validated, the uncatyais ~ We assume an amount of free lime equal tfl0§g of cement.
propagated, a sensitivity analysis is performed, the tatios The amount of calcium oxide that occurs as gypsum is fixed to
between the poroelastic properties is investigated an@bfe /0% the mass of SO

of the elastic modulus is estimated affdient timesteps.

) 3. Multiscale poromechanics-hydration model
2. Material

This work focuses on three cement pastes witfiedent The multiscale poromechanics-hydration model is apphied i
water-to-cement ration/c) of 0.40, 0.50 and 0.60. The cement @ two-step manner: a hydration model and a multiscale porome
composition is an important factor that influences the clseami  chanics model. The hydration model allows to define the evolu
of hydration and the properties of cement paste. The cemeiion of the volumetric fractions of the invariant materiaigses
composition of this study is taken from the experimentafigtu contained in the aging cement paste. The multiscale porome-
of Boumiz et al. [20, 21] on the elastic properties at eagg-a chanics model is used to upscale the poroelastic properties
of cement-based materials. Two approaches can be used to d@sed on a microstructure scheme.
scribe the cement composition: the oxide composition aed th
ch_emical phfase composit_ion. The major oxides composition o3 1 Hydration model
this cement is presented in Table 1.

To model hydration, one needs to assess the phase com-The hydration model adopted in this work was proposed by
position. Cements are made of four major grinded clinkeBernard etal. [6] and improved by Pichler etal. [11]. It cists
phases that react férently with water: tricalcium silicate, in stoichiometric and kinetic equations used to assessvie e
dicalcium silicate, tricalcium aluminate (aluminate) aetta-  lution of volume fractions of hydration products and reatsa
calcium aluminoferrite (ferrite). According to cement alte  through time.
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3.1.1. Stoichiometry a characteristic time,, equal tot,,/&x,. The end of dissolution
Independently from the rate of reaction, the amounts of-reads marked by a threshold degree of hydrationfor each of the

tants and products involved in cement hydration can be ssges main clinker phases.

by stoichiometric relations. Those reactions occur betwbe Growth and nucleatioffiollow the dissolution. This process

anhydrous compounds named aboveSCGS, GA, C,AF, is well described by the phase evolution model of Avrami [25]

and CSH,) and water to form hydration products. Some of theThe corresponding normalizeiaity is:

hydration products also react further on. Tennis and Jgsnin

[24] proposed stoichiometric relations to describe thecpss: AME) = k(S 510 = (8)
[N (1= & - £
2G5S +106H — Cs45Hs + 2.6CH (1) Where the operatdf) is such thatx) = 1/2 (x + |X|) VX € R.

The characteristic time,, related to this kinetic law is equal to
2GS+ 8’€H = CasSoHe + 0'_6CH @) 1/(k«ky) Wherex, is the reaction order arkd, a constant rate.

CsA + 3CSH, + 26H — CsAS3H3) 3) Diffusionoccurs as a late hydration process beyond a thresh-
old degreef; defined for every main clinker phase. The nor-

2CeA + CeAS3Hz2 + 4H — 3C4ASHL, @ malized dfinity associated with this process is:
C4AF + 2CH+ 10H — 2C3(A, F)He (5) 2
~ 1-&)3
Eg. (1) and Eq. (2) describe the formation of calcium-sitea AP(&) = E T &) T )
hydrates(C34S;Hs) and portlandite (CH). Eq. (3) allows to -85 - (-89

quantify the amount of ettringite ¢SzH3), also noted AFt, Thanks to the work of Fujii and Kondo [26], the character-
formed by hydration of gypsum and aluminate. Ettringite canistic time 7, of this kinetic mechanism can be expressed by
react further with aluminate to form some monosulfoalurténa R?/(3Dx) whereR is the initial mean radius of the anhydrous
(C4ASH;y) also noted AFm. The hydration of ferrite leads to cement particles andy, the codficient of difusion of dissolved

the precipitation of hydrogarnet §G\, F)Hg). ions through existing layers of hydration products towatas
remaining anhydrous pha¥e
3.1.2. Kinetic Because the hydration of aluminate follows two stoichiomet

The mass exchanges described by stoichiometry occur at dific reactions, an order of priority needs to be specified betw
ferent rates depending on the clinker phase involved indhe-r  EQ. (3) and Eq. (4). Aluminate reacts primarily with gypsum t
tion. The advancement of the hydration process of a solkalin  form ettringite as described by Eq. (3). Once all the gypssim i

phase is expressed by means of a hydration degree: consumed, it can react with ettringite to form monosulfagtu
nate with respect to Eq. (4).
ft)=1- my(t) (6) It is assumed that the fllision process leads to the precipi-
Myo tation of calcium-silicate-hydrates (C-S-H) that are derikan

: . those associated with dissolution and nucleation [6]. ldeac
Where the hydration degrag refers to th? _rglatwe amount distinction is made between the C-S-H precipitated either d
of reactgnt consumes, compared to the mmal amo.umw ing the first hydration processes or bytfdsion. With respect to
present in the system. The overall hydration degfé ob- the nomenclature inroducedby Jennings [27], the first ores a

tained by summing the hydration degrees of all the anhydroulsefered toas low density (LD) C-S-H and the last ones as high
phases weighted by their respective initial weight fractibhe density (HD) C-S-H

kinetics of hydration of the four major clinker phases is de-
scrlped by relationships that Ilnkthg reaction ragg/dt to the_ 3.1.3. Volume fractions
affinity A(&x) referred to as the driving force of the hydration The volumesV. of the main clinker phases can be com-
reaction. In a first order approach, we disregard the chemome X . P

chanical couplings which are of secondary importance for no puted as functions of time equalfig,.¢, (t)/p, where the molar

i . massesMy and densitiepy are given by Tennis and Jennings
mal conditions of temperature and pressure. The normalize . : :

N i 4]. The hydration degrees(t) are obtained from the solution
affinity is expressed as follows:

to Eq. (7) with respect to the appropriate expression of thre n
Eax (1 1\]d& malized dfinity of each kinetic process. It is assumed that the
7 ( )] ot (7)  sample is hydrated with an infinite supply of water so that the
volumes of hydration products can be computed as functions
WhereE,, is the apparent activation energy for the hydrationof time governed by the remaining amounts of major clinker
of a phaseX among the major clinker compounds aftis the ~ phases:

universal gas constant. The characteristic timds defined at

a reference temperatuly and depends on the hydration pro- Ve(t) = MP&rnx.onP/xfx(t) (10)
cess. Three main reaction processes can be considered to de- My pe

scribe the hydration of a cement mixture: dissolution, dlow  where the indeXP refers to the hydration product amg,

and nucleation and flusion.Dissolutionis the first reaction to is the number of moles of product generated by hydration of
occur. It can be described with a norméiity A(&,) of 1and  one mole of anhydrous cement phaée The stoichiometric

3
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ratiosn,x are straightforwardly obtained from Egs. (1)-(5). The the scale of preferential invariant densities of hydral@s(0).
volume fractions of reactanfg(t) and hydration productg(t)  The qualitative phase composition of each scale and the cor-
are obtained by normalization of the respective voluMgeand  responding essential morphological information are comimu

V., with the total volume at timé cated below.

. —4
3.2. Multiscale poromechanics model Level I : Cement paste A<10"m

The multiscale poromechanics model provides the Biot-
Willis parameter, the skeleton Biot modulus, the Poissoars
tio, the elastic modulus and the percolation threshold ofera
paste as functions of volume fractions which are obtainechfr
the hydration model.

The approach adopted is inspired from underlying works in
microporomechanics[1, 9, 10] and model applications ttyear . ,
age cement-based materials [6, 15, 16]. However, the peapos L-evel I : Aging C-S-H A <10°m
model assumes fierent hypotheses with respect to the work of
Sanahuja et al. [15], such as: (i) a spherical elementaryHC-S
particle at the nanometer scale. As demonstrated by Samahuj
al [28], the shape of particles of polycrystals with packiten-
sity greater than 60% (as LD and HD C-S-H) is a second order
parameter; (ii) a larger number of anhydrous phases andhydr
tion products; (iii) spherical particles of HD C-S-H embedd
into a matrix of LD C-S-H. Although the observed morphol-
ogy of C-S-H at the scale of several hundreds of nanometers
is often refered to as fibrillar, it varies over time [29] anel- d
pends on drying conditions that provoke the rearangement of
the elementary C-S-H particles [30]. As it idfitiult to define
a precise morphology that will correspond to the shape of LD
and HD C-S-H in any conditions, the same representation that
Bernard et al. [6] is adopted (see Fig. 1); (iv) non-sphérica
inclusions of portlandite and ettringite. Crystals of pemmtlite Figure 1:
and ettringite exhibit strongly aspherical shapes andritnrie
to the setting of cement paste [23]; (v) a fixed porosity of LD | eye] || is representative of heterogeneities of characteristic
C-S-H. lengths smaller than 1@ m. The phases at this scale are the

The model is developed as follows: firstly, the microstreetu  5nnydrous cement particles, hydration products and paites.
of cement paste is represented in terms of elementary pbBisesgnhydrous phases {8, GS, GA, C4AF, and GSH,) are not
invariant mechanical properties. A representative eléargn very sharp [23] and are usually considered as spherical-ncl
volume (REV) [31] that contains qualitative and morphologi sjons [6, 15]. The main non-porous elementary hydratiodpro
cal information is drawn for every characteristic lengtllec cts are portlandite, AFt, AFm and hydrogarnet. The shape of
of the material. These elements are significantly smalianth AFm and hydrogarnetis not well defined and could even change
the size of the structure and larger than the inhomogeseitijyring hydration [23]. Due to lack of information and their
they contain; secondly, the microscopic mechanical resgen  small volume fractions, they are here simply represented by
of the cement paste subjected to prescribed macroscopibou spherical inclusions [11, 33]. Portlandite can be presegtéat
ary conditions are expressed by means of localization t8nso amounts in form of platy crystals which are here represeoyed
thirdly, the general macroscopic response of the system-is € gp|ate ellipsoids [33]. AFt crystals exhibit very sharp #ide
pressed in terms of state equations obtained by homog@mizat shapes and can be modeled by prolate ellipsoids [33]. Thespor
of the local reactions. The investigated poroelastic pig®  are part of the capillary porosity and remain filled of water,

C3S, C2S, C3A, C4AF,
CSH,, CH, AFt, AFm
Hydrogarnet, C-S-H
and pores.

HD C-S-H.

Level 0 : LD C-S-Hand HD C-S-H A~ 10""m

are recovered from these resulting equations. they are considered as spherical inclusions. Calciurnasé
hydrates are present as a sole homogeneous aging phase. At
3.2.1. Microstructure representation this scale, C-S-H particles can either be considered adewed

Converging forts of experimental characterization of me- [34, 35] or as spherical inclusions [6, 7]. This is a longastiag
chanical properties at nanoscale [5, 7] and modeling ofwalc ~ and still open scientific debate. Here, the C-S-H partictes a
silicate-hydrates [27, 32] have led to a multiscale repredon  considered spherical.
of heterogeneity in cement-based materials. A microstrect ~ When hydration starts, the mixture contains a greater atnoun
of cement paste can be described over three length scales [Df liquid than solids and the paste behaves like a viscoud.flui
As presented in Fig. 1, those are, from the coarsest to thetfine As long as enough hydration product is precipitated to ensur
the cement paste itself (level 11), the aging C-S-H (levedtd  a contact between solid particles, the paste sets and exhibi
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increasing sfthess as a function of time. As stated by Bernard whereg, refers to the porosities of LD and HD C-S-Hjs
et al. [6], this is the scale of solid percolation [36] for whi  the second order identity tensor, ahis the fourth order iden-

Sanahuja et al. [15] have demonstrated the strong influece @ty tensor. The localization tensdr(z)” would concentrate

the shape of inclusions on the estimated threshold. ~_the totality of the strai&" on the globules of the corresponding
Level lis representative of heterogeneities of characterlsn(bhasey if the pore pressure was equal to zero.

length smaller than T6 m. This is the smallest scale that can * The second poromechanical state equation expresses the La-
be characterized by current nanoindentation techniquesalu grangian porosity change as follows:

roughness limitations [37]. According to the colloidal nebdf

calcium-silicate-hydrates proposed by Jennings [27, tB2kse 5 .=, 1

phases are the hydration products that constitute thelagjua (6= do) =By :& + Wyp (13)

ing C-S-H: low density and high density C-S-H, also refered t whereN,’s are skeleton Biot moduli:

as LD and HD C-S-H or outer and inner products [38]. The in-

variance of the properties of these phases was the majondgindi 1

P N~
of Constantinides [10] confirmed by Vandamme [39]. Early- N, 1o(1= ¢Sy : (1 1rA@) ) (14)

hydration is characterized by nucleation and growth of LD C- 114 indexY stands for LD and HD C-S-H and the compli-
S-H. HD C-S-H precipitates later, within smaller region®1€0 o a tensor of the globulé is known.

fined by low density product. Hence, the high density caleium  11q straings” developed at scale 0 are due to the combined

silicate-hydrates are represented by spherical inclsgatbed-  gact of the pore pressureand the mean strai&™" applied
ded into a matrix of low density hydration product.

over the aging C-S-H at scale I. Thanks to linear elasticity,
Level Ois representative of heterogeneities of characteristignhjs problem can be decomposed into superimposable loading

length about 16 m. Two REV's are drawn in order to describe gses: first, the straif™" is applied and the mean stresses

both types of calcium-silicate-hydrates. According to®&  ang mean straing’* occur at level 0. Second, the pore pres-

loidal model of Jennings [27, 32], LD and HD C-S-H are con-gyrep is applied and the mean stresses and mean strains

situted of the same spherical C-S-H solid particles. Thes&-p 57" are developed. The application of Levin's theorem [40-42]

cles, refered to aglobules(with the superscript’), are packed provides the following relation:
at different densities with respect to each of the C-S-H phases.

The corresponding gel porositigs, andg,, were estimated to VR Y

37.3% and 23.7% and remain filled by water [1, 27]. ko E = [ > o } T (15)
Three position vectorg with k = 0, 1, 2 are defined over the VELDHD v=LDHD

REV’s drawn at levels 0, | and II. An uniform strain boundary  where the straing’" developed under the first loading case

condition is applied on the REV at level Il so that the disptac gy of the formz@Y - %" The relations between stress and

ment¢, is equal tok - z whereE is the macroscopic uniform - srain developed under the second loading case are dettmin

Strain_tensor. The REV's defined at smaller scales are S|lﬂ!lU§eC with respect to Eq (11) and the above equation is recast as:
to the same kind of boundary conditions induced by local me-

chanical responses developed at relative upper scalesesA pr y L .
surep is applied in both interconnecting porosities defined at p Z B, :(Al) -1)= Z LC, e 1 (AR - 1)

scale 0 and II. Y=LD,HD Y=LD,HD

(16)

A second use of Levin’s theorem leads to the following equa-
3.2.2. Localization tion:
At level |, the poroelastic behavior of the LD and HD C-S- y _,

H phases is described by means of classical state equafions o Z f.Cy:A(Z) 88" =0 (17)
microporomechanics[1, 10, 40]. The mean stregsdaduced Y=LD,HD
by the prescribed strairss and the pore pressugeare related An expression fo”" is obtained from Egs. (16) and (17)

as follows: and the total straing” are recovered by summing the strains

developed under the first and second loading cases:
o' =C,:€ -Byp (11)
g =Ak) F"+S,:B:(A@) -I)p  (18)
whereY stands either for LD or HD C-S-H. The overbar op- o . .
erator is defined so that refers to the volume averageabver where the compliance tensdsare the inverses of the 8t
the phasé. The stitness tensor€, are known. The contribu- ness tensorg,.

tion of the pore pressure on the stress states of these REV’s | At level I, the strain acting over thg aging C'S'H is due to
quantified by the Biot tensoi®, which can be readily calcu- 1€ Pore pressurp and the macroscopic strathapplied over
lated by stress average as: the cement paste. Similarly, the situation is decomposted in

superimposable loading cases: first, the stEamapplied and a
o mean strese” " and mean straig”™" occur at level I; second,
By=1:|I-(1-¢)A(z) (12)  the pore pressurp is applied and the mean stresg”"" and



mean straire”" are developed. A first application of Levin's concentration tensak(z) is obtained from the following space

theorem gives the following relation: average over Euler angles [16]:
——csH —-s ——p - z (T . _1 8ing
—ooplt fos 4 Z fo°|  E = —gpl: A2)" : E Az) = f f [T+ Pi(6,¢): (Co-Ci)] I dedg (27)
. — ¢=0 J6=0 4

The Hill polarization tensoP; (6, ¢) depends on the shape of
the inclusions of;, their orientation and the ffihess tensotg
+ Z fCs: 8" : @s 'E of the reference medium. Every polarization tensor is eel&b
Sects - an Eshelby tensdi®s"by the relatiorS?s" = P; : Co. The form
(19) of the Eshelby tensor is widely documented in textbooks on
] ) micromechanics [44]. The only missing parameter is the@spe
wheress is the set of non-porous solid phases of the REV a{atig defined as the ratio of the length of the symmetry axis an
level Il, ¢ is the porosity at the same scale and the Biot tensofhe diameter in the symmetry plane. For oblates, spheres and
Besw is defined to simplify the formulation [10]: prolates it is respectively smaller than 1, equal to 1 andtgre
than 1. The double integration of Eq. (27) is performed with

+ fesn [(CCSH A BCSHp] : A(é)CSH ' E

———LD ————HD
Besw = foA(Z) B + foAZ) B (20)  respect to the approximation of Stroud [35, 45].
wheref® = f/(fo + fio) andfy = fuo/(fo + fuo) SO that A reference phas€, is defined as a function of both the
fro4fr =1, morphology the homogenization scheme adopted for each REV.
The stifness tenso€., of the aging C-S-H is: Two homogenization schemes are considered: the self con-
sistent scheme and the Mori-Tanaka scheme [46]. The Mori-
Cesn = £ Coo Mz + £ Cro : Az) " (21) Tanaka scheme is typical for media with a strong matrix-

h | t the localizati inclusion morphology and considers the embedding phase as
Because the volume average of the localization tensorsovelihe reference medium. The self consistent scheme is typical

REV is equal to the_ fourth order unity tensor, t_he conceiunat for polydisperse granular media and considers the reguiin
tensor of the porosity of level Il can be recast in: mogenized medium as a reference and involves an implicit for
mulation of the auxiliary problem. According to Bernard et
Az = 1 I- folh(z) - Z fA(Z) (22)  al. [6], the self consistent scheme is appropriate to mdue| t
- ¥2 - et - solid percolation of the REV drawn at level Il. This scheme is
also appropriate to model the nanogranular nature of the col
loidal representation of LD and HD C-S-H at scale 0 [47]. The
Mori-Tanaka scheme is adopted to take into account thegtron
matrix-inclusion morphology of the aging C-S-H. The LD C-S-
Z fCo: A@) E: 8" + fosCosi: Az) :E:s" =0 Histhen refered to as the reference medium of scale I.

Sealy

A second application of Levin's theorem leads to the follow-
ing equation:

(23)  3.2.3. Homogenization

The total strain developed over the aging C-S-H can then be The macroscopic resulting stress tenS@an be obtained by
recovered from Egs. (19), (22) and (23). volumetric average of the localized resulting stresses:

F"=A@) E+Sw:(1-Bs):(A@) -I)p (24) E= D fCs i 8+ foaCosn s 8% = (fosBos + 921) P (28)
- - A
The mean strain applied over every non-porous phase of scale 11,4 state equation (28) can be recast in:
Il reduces to: '

—s —s ——S Ez(CE—Bp (29)
e =Az) E+Ss:1: (A(zz) - ]I) p (25) _ ] )
h ) - o whereC is the homogenized $ihess tensor:
The mean strain applied over the capillary porosity is then
equal to: C= ) fCs:A@) + fesCoss: A (30)
seals
P = 1 {fCSHECSH + Z fsgs} (26) The dtective Biot tensor of the cement padie s expressed
¥2 seals by:

The localizer tensor for an ellipsoidal inclusion in a mediu
subjected to uniform boundary conitions assessed fromahe s

—S ————CSH
lution of Eshelby [43]. The assumption is made that, for each B=1:|I- Z fsA(z) - fesnh(2) a1
phase of the level k, the inclusions are randomly oriented in et (31)
the REV with respect to a uniform distribution. Then, thastr + fCSHA(é)CSH " Besn
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The total Lagrangian change in porosity is formulated as fol reformulated inbl whereb is refered to as the Biot-Willis pa-
lows: rameter. The bulk and shear moduli, respectikeaindg, can
be related to the elastic modul&sand the Poisson’s ratio
with the following equations:
¢ —¢o = ()Oztrgp + fCSH [fL*D (¢ - ¢O)LD + f:D (¢ - ¢O)HD] (32)
9%kg . 3k-2g
where the first term represents the change in the capillary E= 3k+g’ V= ek + 29
porosity (level Il) and the second one represents the thtaige
in the gel porosity (level 0). This state equation can begeca
in:

(39)

The solid percolation threshotg of the cement paste is in-
vestigated by means of the following equation:

e, 1 _ dg
¢-¢o=B:E+p (33) t, = arg giaxa(t) (40)

whereN is the skeleton Biot modulus. It exhibits two com- Whereg is the shear modulus of the cement paste_
ponents, for the two scales where the pore pregsigepplied:

1i_1 + 1 (34) 4. Polynomial chaos expansion and post-processing
N N N,
The contribution of the pressure applied in the gel porosity After having presented the poromechanics-hydration model
on the total change in porosity can be quantified Wgh the randomness of the input parameters is assumed and the un-

certainty of the poroelastic properties is apprehendeddpea-
tral non-intrusive approach [19, 48]. The model responses a

1_ fesn (1 — Best) & Sesw * Besn (A(ZZ)CS” — ]1) represented by polynomial chaos expansions and the regulti
o - metamodel is post-processed in order to extract statistioa
. . (35) e : :
+ h + foo ments, perform a global sensitivity analysis and estimate’s
SN, Ny for model outputs [49].

Likewise, the contribution of the pressure applied in thg-ca . .
. . . . 4.1. Polynomial chaos representation
illary pores on the total change in porosity can be quantified
with N,: The deterministic multiscale poromechanics-hydration
model is notedM. It has M random input parameters
1 {Xi,i = 1,..., M} gathered in a vectaX with prescribed prob-
- =fean (Bosw = 1) 1 [Scon: 1: (A(zz)cs” -1)) ability density function (PDF)fx(x) and predicts poroelastic
N, - properties at dferent time steps. All these predictions are

(36) ; ® pre
) e s represented by random variables gatheref¥inj = 1,...,N}.
+1: Zg; fs(Besi—1) 1S5 2 1: (H - Az) ) This relation is expressed as follows:
Sedls
In the absence of fluid mass exchange, the undrain@dests Y = M(X) (41)
tensor can be evaluated by [40]: whereX andY are the random vectors of input parameters
CYl=C+MB®B 37) and model predictions. Their realizations are notechdy.

where the Biot modulusyl, is a function of the skeleton Biot 4 1 1. Construction of the basis

modulusN and the total porosity: It is assumed thaM is square integrable with respect to

1 1 g the probability measurB(dx) = fx(x)dx, meaning that every

M- N + Kis (38)  model response has a finite variance. Thereby, each outgut va

able can be represented by a polynomial chaos expansioa of th

By considering the pore solution as water, the fluid bulk mod+o|iowing form [19]:
ulusks, can be estimated at 2.3 GPa. The total porosity of the
cement pasteg contains capillary pores and gel pores so that Y, = MO (X) = Z a{(Yj)% (X) (42)

Yo = Y2 + fLD¢LD + fHD¢HD = fu+ fLD¢LD + fHD¢HD because the o -
capillary pores remain saturated.

It is assumed that all the invariant elementary phasesdensi Wherea denotes all the possible multi-indices(..., am)
ered in this model and the resulting homogenized cement pastvith «; € N, aﬁ,') refers to unknown deterministic ciieients
are isotropic. Then, the fliness tenso€ can be recast in the and¢,(x) to multivariate basis functions orthonormal with re-
form 3kJ + 2gK where the fourth order tensofsandK stand  spect to the joint probability density functidr(x) of the input
for the spherical and deviatoric projections and are ragdy  parameters. The orthonormality is verified by the following
equal to ¥31® 1 andl - J. Likewise, the Biot tensoB is  ner product of the Hilbert spacd = £2(RM, R, P(dx)):

acNM



(¢a(®), 45(9),, = fR (00 x(Ydx =655 (43) Y= MO (X) = " alg, (X) = P/Nz_laﬁ”ask(z) (48)
lal<p k=0

whered,s = 1if @ = g and 0 otherwise.

In the case of independent input parameters, the multivari-
ate basis functions of Eq. (42) are expressed in terms obtens
products of univariate functions [49]:

The multi-indicese of the last right-hand side are changed
into k indices in order to improve the understanding and sim-
plify the forthcoming formulations. However, the amountrof

formation contained by the multi-indicess greater than what
M the integer indicek provide. Hence atrack is kept between the
$o(X) = l_lngi)(xi) (44)  multi-indicese and the cofiicientsal”. Each coéficiental” is
i part of the following set:

Eq. (43) is verified by defining every univariate Hilbertian 0 )
basisz!)(x) as the normalized function of a classical orthogo- Aa = {ak k=0,...PIN-1j=1.., N} (49)
nal polynomial. The choice of the suitable family of polyno-  The codficients of the truncated expansion can be deter-

mials is dictated by the PDF of the input parameterin the  mined by solving the following least-squares minimization
sequel the input parameters of the multiscale poromec&anicproblem:

hydration model are described either by lognormalNnor

uniform () distributions. In the former case, lognormal vari- )

ables anre transformed into Gaussian variables using &se cl N s PM-1

sical exponentiation and the associatéermite polynomials  #a = arg mlnz M(') X(n) Z al g (X(n)) (50)
(that are othogonal with respect to the Gaussian measwe) ar g’ eR Jein= k=0

used. In the latter case, so-calledgendre polynomialare

wherex™ is a realization of the random input vector of pa-
rametersX among the experimental desighh = {x",n =
1,...,.ng}. The size ofX needs to be at least as big BAN so
(I)()(') { (2ai + 1):1/2Leai (%) ?f Xi ~ U (45) that a solution exists for Eqg. (50). _It is usually.recommemtde
(i) Y2He, (%) ifln X ~ N take~ 2—3P/N [48, 50]. The experimental design can be gener-
ated by Monte-Carlo simulation or Latin-Hypercube-Samgpli
wherel e, andHe,, refer to the Legendre and Hermite poly- (LHS).
nomials of degree;.
Thereby, the multiscale poromechanics-hydration mode#.2. Post-processing
M(X) is replaced by a polynomial expansion of the form of
Eq. (42). For practical application, one needs to deterrtiee
coeﬁ‘iuentsaw) associated with each model prediction

used.

Once the finite set of céigcients of Eq. (49) is correctly esti-
mated, the truncated serie expansion of Eq. (48) can be gsed a
a surrogate of the multiscale poromechanics-hydrationehod
in order to provide random predictions. Moreover, some guan
4.1.2. Practical implementation titative information can be obtained by post-processiras¢h

For the sake of practical implementation, the infinite polyn codficients without any need to simulate additional model re-
mial expansion of Eq. (42) is truncated and the model reggsons sponses. Indeed, the first statistical moments and Solatitas
are approximated. This is done by limiting the expansion tcof the random outputs are straightforwardly computed theat w
multivariate polynomials of total degree less or equal txedi  EQ. (48) can also be used together with Monte Carlo simuiatio
degreep. The total degregq of any multivariate basis polyno- in order to assess the PDF of the poroelastic properties by ke

mial ¢,(X) is given by: nel smoothing techniques [51].
M 4.2.1. First statistical moments
q=laf= Zai (46) The mean average value of every model prediciidY(X)

(1)

is the codficienta,’ of order zero [49]:

The sizeP of the corresponding finite set of déieients

@, q=lal<pj=1,..,N}is: py, = E[Y]] = a)) (51)
M+ p (M + p)! where it is assumed that the indieequals 0 folle| =
P= N( ) =NV (47) The variance of each model response can be obtained from

the following expression:

whereN is the number components of the model response. B/N-1
i i 2
Each model response can then be approximated by a serie of o_\z(j = VIY|] = Z (ai(l)) (52)

the following form: )



4.2.2. Sobol’ decomposition 4.2.3. Probability density function

The univariate polynomials defined at Eq. (45) are indepen- The polynomial chaos expansionin Eq. (48) may also be con-
dentonx if a; is equal to zero. Thereby, itis possible to identify sidered as a surrogate model of the original motl In or-

the input parameters the multivariate polynomials are mot{
tions of, and to reformulate the expansion of Eq. (42) byrtgki
this information into account. An arbitrary s, ;. that con-
tains all the multi-indices for which {a;,i = iy, ...,is} are the

only indices greater than zero is defined for this purpose:

o >0VvVi=1,..,
a=0VvVi=1,..,

M, i€ (is,...
M, i¢ (il,...,

is)

w}(%)

der to estimate and plot the probability density functiomoy
scalar random response a large sample set of points is drawn
according to the input joint probability density functidg(x),
say{y(jk),k =1,..,ng (e.g. n, = 10,000 - 100000). Then the
PDF of M)(X) may be estimated by kernel smoothing:

<)

Ns

YJ ) = nah Z

(58)

As presented by Sudret [52, 53], it is possible to gather the Wherefyj (yj) is the estimator of the PDF of;, ns is the sam-
terms of Eq. (42) with respect to the input parameters they deple size,K(-) is a kernel function anth is the bandwidth pa-

pend on:
M
MO () = +ZZ#AN
i=1 ae.¥
+ Z Z a; y(Xips Xi,) +
1<iy<i<M ae 4 i, (54)
+ Z Z al')¢g(m1,...,>qs) + ..
1<ii<...<is<M a€S,
+ Z (])¢(Y(X19 ) )
Qéfl \\\\
Whereag) refers to the mean of; (see Eq. (51)). The sum-

mands of the above formulation constitute the unique Sobo

decomposition [54] offj. Each summand can be expressed as

follows [52]:
MD (X)) = }] aa(Xr. %) (55)
eS|
WhereM(') i, is the part of the model respon¥g that de-

.....

pends only on the input parametdss, i = iy, ...,ig}. Conse-
quently, the part of the total variance that depends onl\esd
parameters is:

(56)

,,,,,

The relative contribution of any combination of random ihpu
parameters to the varianceéfis straightforwardly expressed
by the following polynomial chaos-based Sobol’ indices]{52

g s %) [0F, (57)

,,,,,,,,,,

Whereo-\z(j is given by Eg. (52) for a truncated polynomial
expansion and a finite set of d&eients given by Eq. (49).

The Sobol’ indices constitute the quantitative informatio
used for the sensitivity analysis of model predictions -
certainty of the input parameters.

rameter. The kernel is a positive function defined such that

fK(y,—)dy,— = 1. The most usual kernels are Gaussian and

Epanechnikov functions [51]. For a given kernel functidre t

quality of the estimation depends on the smoothness céetrol

by the band width parameter. Good results can be obtained fro

the empirical Silverman rule for the calculation of the band
8+/R(K)

width:
1/5
> } on
3u2 (K)

whered is the estimator of the standard deviationYpbased
on the samplé jk), k = 1,...,ng}. This formulation is obtained
by the minimization of the asymptotic mean integrated sguar
error for densities not far from normalR(K) and uy(K) are
Ithained from:

~1/5
S

h(K) = (59)

mm=jkm%WﬂAm=f¢MWw (60)

5. Model input parameters

The multiscale poromechanics-hydrationmodel presented b
the authors requires the specification of four kinds of ingat
rameters: the initial phase composition, the kinetic patans
of hydration, the invariant elastic properties and the rhotpg-
ical parameters of microstructure. Most of this informatias
either been directly characterized with uncertainty oeassd
by inverse modeling and calibration. The aim of this secison
to present the models of uncertainty considered for thqsatin
parameters.

5.1. Phase composition

The initial quantitative phase composition of the cementmi
ture (see Table 2) is determined by application of the Bogue
method described in Section 2.

The inaccuracy of the mass fractions predicted by Bogue cal-
culation has been discussed by several authors [23, 55-58].
The first reason for this discrepancy with the pure composi-
tion is that this method assumes that the clinker reacheis equ
librium during cooling while it is very unlikely to happen in
cement manufacture [23]. The non-consideration of the sig-
nificant amounts of substituent ions present in the anhydrou



hydrogarnet, AFm and AFt. The Poisson’s ratios are constier

Table 2: Quantitative phase composition T
Q P P as deterministic |nput parameters.

Anhydrous Mass fractiomm, [1]

phaseX Mean PDF 5.4. Microstructure parameters

CsS 0.622 U (0.568,0.676) The morphological input parameters of microstructure are
C,S 0.152 4 (0.126,0.178) the aspect ratios, of inclusions and the gel porositigs of
CsA 0.106 U (0.097,0.115) LD and HD C-S-H. Most of the inclusions of the multiscale
C,AF 0.009 U (0.008,0.010) model are considered spherical with a deterministic agjptiot
CSH, 0.074 U (0.068,0.080) of 1. Ettringite crystals are modeled by prolate ellipsoidth

an aspect ratio,. of 20 in order to take their sharpness into
account. Portlandite inclusions are represented by oblkpe
soids and their aspect ratig, is set to 0.25 [33]. Both of these

phases and the attribution of the whole amount of major (Mdeinput parameters are defined as uniform random variablds wit

(see Table 1) solely to the main clinker phases also cotiériiou a codficient of variation of 10%. The porositigs, andg, are

es_tlm_atlon errors [23]. Without experimental data _avddahn respectively set to 37.3 and 24.7% with respect to the estima
this first approach, we reasonably assume those input parame

: . ons of Jennings [27] and Ulm et al. [1]. Because the density
ters as uniform random variables. The mean of each mass fra8f early-age calcium-silicate-hydrates is much less @ettan

tion is taken equal to the estimation obtained from Section %he density of latter hydration product [65], the porosity.®
and a cofiicient of variation of 5% is considered. This cor- ~ g s considered as a random input pr;lrameter whijds
responds to selecting a range[05 V3., 0.05 V3u.] around kept deterministic. A lognormal PDF is considereddqy with

each mean valug. . a codficient of variation of 10%.

5.2. Kinetic parameters

The input parameters of the hydration model described &8+ Resultsand discussion
Section 3.1 are summarized in Tables 3 and 4. The character- ) ) ]
istic time 7, the reaction ordet,, the difusion codficient D, The multiscale poromechan_lcs—hydrajtlon model_proposed by
and the hydration degrees and¢: that mark the advancement the authors allows one to pre_dlct the solid percolatlorslhmdd_
stages of hydration at transition between kinetic proceésee of a cement paste as a fun_ct|0n of the Waterfto-cement rtartl(_)f
Section 3) are listed in Table 3 for8, GS, GA and GAF. 0.353 w/c < 0.70. It also gives access to estimates of the Blot-
All those parameters were presented by Bernard et al. [6] anf/illis parameter, the skeleton Biot modulus and the drained
most of them vary as functions of water-to-cement ratipgj. ~ nd undrained elastic moduli and Poisson’s ratios as fomsti
According to Berliner et al. [59], the reaction orderand the of time. The aim of this section is to valld_ate this deterr_smm
diffusion codficientD, are considered as random input param-M°del, to present the results of uncertainty propagatiomfr
eters while the characteristic timg, and the hydration degrees the input parameters, to identify the greatest contrisuiothe
are deterministic. The characteristic times are modeldagy Uncertainty of model predictions and to estimate the PDRef t
arithmic PDF with cofficients of variation about 10% and the drained elastic modulus atftgrent time steps.
diffusion codicients are also considered as lognormal random
input parameters with cdigcients of variation about 12%. 6.1. Model validation

The apparent activation energies presented in Table 4 are ob
tained from Bernard et al. [6]. Without precise quantitativ
information about their uncertainty, the authors consttiese
input parameters as uniform random variables withfitcients
of variation of 5%.

The predictive capabilities of the deterministic model are
evaluated with respect to the evolution of the undrained-ela
tic modulus and Poisson’s ratio compared to experimental da
obtained by Boumiz et al. [20, 21] on cement pastes similar to
the materials considered in this study.
. The evolution of the volume fractions required by the multi-
5.3. Elastic parameters scale poromechanics model is presented in Fig. 2 for a water-
The input parameters of the multiscale poromechanics modelement ratio of 0.50 at a curing temperattiref 25°C. The vol-
presented at Section 3.2 are summarized in Table 5. Those auene fractions of hydration product§ {, f, fen, fare @and fe )
the elastic modulE and the Poisson’s ratiosof the elemen- increase in counteraction to decreases of the amounts ©f rea
tary material phases presented in Fig. 2. Most of the elastitants (s, fc,s, fe;a, fo,ae, fesn, @andfy). The late reaction of ettrin-
moduli have been determined from measurements obtained Igjte to form AFm starts at an overall hydration degfex 0.68
nanoindentation while considering fixed values of Poisse’  and is not total; a remaining amount of AFt is predicted at the
tios. These Young moduli are defined as lognormal randorend of hydration.
input parameters with céiécients of variation between 5 and  The prediction of the undrained elastic modukgsis pre-
20%, depending on the values reported by the authors (see Tsented in Fig. 3 as functions of the overall hydration degree
ble 5). A coeficient of variation of 10% is considered to fill the and time. A good agreement is observed between those esti-
lack of quantitative information about uncertainty for gym, mates and the experimental data of Boumiz et al. [20] obthine
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Table 3: Kinetic parameters

Phase, V¢ 1., & [1] &o Dy [em?/h] £
X [11 [h] M™Mean SD PDF [1] Mean SD PDF [1]
CsS 0.4 127 179 0.18 v 1.05x 101 013x10%® InN
05 11.9 172 0.17 Iw 0.02 264x10'° 032x10% InN 0.60
06 112 169 0.17 Iw 6.42x 10710 077x100 InN

C:S 04 66.1 1.03 0.10 Iwv
0.5 60.9 096 0.10 Iw 0.00 664x10' 080x10* InN 0.60
06 59.8 090 0.09 I

CsA 04 535 107 011 I
05 492 100 0.10 Iw 0.04 264x101° 032x10%° InN 0.60
06 426 093 0.09 Inv

C/AF 04 242 237 024 IWN 1.05x 100 013x101° InN
05 214 230 023 IwW 040 264x10° 032x101° InN 0.60
06 179 223 022 Iw 6.42x 1071 077x100 InN

Table 4: Apparent activation energies Lo

o
IS

[ fesn,
s C,AF
M.
[ P
;.

0.4 0.6 0.8 1.0
Overall hydration degree, £ [1]

s
Anhydrous Eax/Z [K] M ren
phaseX Mean PDF 0.8} 1 B pcsn
CsS 4500 U (4110,4890) = = .
C.S 2500 U (2285,2715) 4 —
CsA 5500 U (5025,5975) g 0o ™
C4AF 4200 U (3835,4565) = e
- -fAFt
g
=
<

o
N

by accoustic wave measurements. The root mean square ¢
ror computed between experiments and predictions are 1.2
0.43 and 0.39 GPa for water-to-cement ratios of 0.40, 0.80 an
0.60. Graphically, the solid percolation thresholds carinbe 0§ 0.2
terpreted as the timagor hydration degrees where the curves

of undrained elastic moduli intercept the horizontal axgise

greatest discrepancy with experimental data is observetiéo Figure 2:
mix of water-to-cement ratio of 0.40.

The predictions of the Poisson'’s ratios for the three mix de:[
signs of the study are presented in Fig. 4 and compared ta-expe
imental data from Boumiz et al. [21] at a water-to-cemenbrat
of 0.40. The model predicts a slightly faster decrease of th
Poisson’s ratio than suggested by the experimental date- Ho A set of n; deterministic time steps is prescribed for the
ever the relationy(t) has a shape that is representive of thethree mix designs of this studyv(c = 0.40,0.50,0.60). For
observations and that tends towards the same value than whedch mix, the solid percolation threshdjdis computed and
was measured on the hardened cement paste. the drained elastic modulls the Biot-Willis parameteb and

The multiscale poromechanics-hydration model is validiate the skeleton Biot modulull are simulated at every time step.
for its capaciy to predict the evolution at early-age of ttese  There are B + 1 model responses calculated by mix and 31 in-
tic properties of cement pastes with water-to-cementsdies  put parameters. A degrge= 2 is prescribed for the truncature
tween 0.35 and 0.70. The upper-limit valuevgfc is imposed  of the polynomial expansion (see Eg. (48)) so that the number
by the validity domain of the kinetic parameters calibrabgd of unknown coéicients is 528 per model response. According
Berliner et al. [59] and the lower value is prescribed by the |  to precedent works [48, 66, 67], these fiments can be accu-
itation of the self-consistent homogenization scheme tdbp rately determined by regression from experimental designs
at level Il (see Section 3.2.2) to model percolation. Indeleel  sizes 2 to 3 times greater than the number of unknowns. An ex-
multiscale poromechanics-hydration model predictsahsiiff- perimental design that contains 2,000 realizations by hede
nesses significantly greater than zero for mix designs ofmwat sponse is drawn by LHS. The calculatoins are carried ougusin
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Table 5: Elastic parameters

Compound Nominal E [GPa] 12 Ref.
formula Mean SD PDF

Tricalcium GS 135.0 7.0 Inv 0.3 Acker[60], Velez etal. [61]

silicate

Dicalcium GS 130.0 20.0 Inv 0.3 Acker[60], Velez etal. [61]

silicate

Tricalcium GA 145.0 100 Inv 0.3  Acker[60], Velez et al. [61]

aluminate

Tetracalcium GAF 125.0 25.0 Inw 0.3 Acker[60], Velez et al. [61]

aluminoferrite _

Gypsum GH, 457 46 InN  0.33 Choy et al. [62],
Bhalla et al. [63]

Portlandite CH 380 5.0 Iw 0.305 Constantinidesand Uim [7]

Hydrogarnet GA,F)Hs 224 22 InN 025 Kamali et al. [64]

AFm C4ASH;» 423 42 InN 0.324 Kamali et al. [64]

AFt CeASsHz, 224 22 InN  0.25 Kamali et al. [64]

LD C-S-H G4S;Hsg 21.7 22 InN  0.24 Constantinides and Ulm [7]

HD C-S-H G4SHg 29.4 24 InN  0.24 Constantinides and Ulm [7]
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Figure 3: Figure 4:

the open source software for uncertainty quantificationrOperandomness through scales up to the macroscopic elastic mod
TURNS (http//www.openturns.org. ulus tends to diminish the uncertainty.

Means and variances are computed with respect to Egs. (51) Biot-Willis parameterb: The initial uncertainty is negligible
and (52). The evolution of the means plus or minus a stanbut it increases fastly during the first 12 hours of hydratibime
dard deviation and the cfiwients of variation of the poroelas- limit coefficients of variation lie between 1.5 and 4% and are
tic properties E, b, N) are represented as functions of time in inversely proportional to the water-to-cement ratio. Thepp
Fig. 5. The uncertainties of the model predictions are diesdr  agation through scales does not show any magnification of the
as follows: uncertainty.

Drained elastic modulysE: A very high uncertainty is ob- Skeleton Biot modulud\: The codficients of variation of
served during the first 12 hours, when percolation is sustdlept the skeleton Biot modulus vary between 5 and 10%. The un-
to happen. The lower the water-to-cementratio, the fastitne  certainty of the mix design with a water-to-cement ratio @D
decrease of the cicient of variation towards a limit of 5% in-  exhibits a significant increase during the first 24 hours.
dependent of the mix design. In comparison to the unceytaint Solid percolation threshold,: The mean predictions of the
models of input parameters (see Section 5), the propagattion solid percolation threshold are 1.01, 2.06 and 2.60 h respec
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Figure 5:

tively for water-to-cement ratios of 0.40, 0.50 and 0.60.eTh less significant is the correlation between the setting tme
codficients of variation are 2.5, 6.3 and 9.6%. The greater théhose macroscopic properties. This is consistent with dice f
initial amount of water, the greater is the uncertainty atirsg  that diferent micromechanics-hydration models [6, 15, 35] can
predictions. predict significantly diferent behaviors during the first hours
Fig. 5 also presents the evolution of pairwise correlation®f hydration while providing equally good estimates of matu

among the macroscopic poroelastic properties as a funofion €/astic properties. The correlations of the Biot-Willisae-

time. The elastic modulug and the Biot-Willis parametel ter tensor and the skeleton Biot modulus wijitdecrease faster

are negatively correlated. According to the counteraatiom- thanpe (1)

tribution of pore pressure and strain in the first poromeidzan

state equation (see Eq. 29), this correlation is likely tpkfin ~ 6.3. Global sensitivity analysis

the uncertainty of the computed stress acting over an iBlro e resyits of the global sensitivity analysis are respelyti

element of cem_ent paste subjected_to tensile strains. In ﬂl?resented in Figs. 7, 8 and 9 for the percolation threshbil, t

case of a prescribed pore pressure with stress-free defiomsa  yrained elastic modulus and the Biot-Willis parameter. ther

(e.g. autogenous shrinkage), this correlation may be responsis, e of clarity, the 31 input parameters were gathered oo f

ble of a magnification of the uncertainty of the computed Vol-c,tegories (see Section 5) and allocated as follows: Sainiti

ume changes. Similarly, beyond 12 hours of hydration, tjo - 5 qnts of anhydrous cement phases, 12 kinetic parameters,

uncertainty of the skeleton Biot modulddsand the Biot-Willis  g|5stic moduli and 3 morphological parameters of micrastru

parameteib amplifies the uncertainty of the porosity changey e

predicted by Eg. (33). The contribution of each category consists in the sum of the
The pairwise correlations of the poroelastic propertighwi first order Sobol’ indices (see Eq. (58)) of the input pararset

the solid percolation threshold are presented in Fig. 6 asaf belonging to the category. The total sum of these indices is

tion of time. The more the hydration process is advanced, thalmost 1 for every model response. This means that there are

13



6.4. Probability density function

The stochastic metamodel (see Eqg. (48)) is used to generate
samples of 7,000 realizations of the elastic modulusfémint
time steps. The PDF of these reponse quantities is estirbgted
- ‘ ‘ ‘ ‘ ‘ ‘ ‘ Gaussian kernel smoothing (see Section 4.2.3) and repegsen
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ in Fig. 10. Then, extreme values of the elastic modulus can be

) obtained from those distributions. For instance, the 5%tjlea
is represented in Fig. 10.
I | Before using such PDFs for consistent reliability analyisis
1 ‘ ‘ \ \ \ \ \ \ could be relevant to confront the uncertainty propagatia@ p
dicted in this study to experimental observations of theppro
RN 1 agation of randomness through scales. A part of this infor-
ST A mation could be obtained by an extensive application of non-

1 destructive mechanical testing procedures at nano- andomac

0 ‘ 2w a8 72 9% scale.

[| — w/c=0.40 - - w/c=0.50 -+ w/e=0.60
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Figure 6: 7. Conclusion and outlook on futureresearch

A multiscale poromechanics-hydration model was proposed
to estimate the Biot-Willis parameter, the skeleton Biotdumo
lus and the drained and undrained elastic moduli and Pdgsson
ratio of hydrating cement paste as a function of time. Th@sha
of the inclusions of ettringite and portlandite in cemenstpa

The greatest contributors to the uncertainty of the percolawas considered to provide a better modeling of the evoluifon
tion threshold are the kinetic parameters. Independeftyp  the elastic properties during the first hours of hydrationege
category, the variability of the apparent activation ey@rfgalu-  properties can then be used in macroscopic state equations t
minateE,,./Z%, the aspect ratio of ettringite., and the aspect model the poromechanical behavior of partially saturated c
ratio of portlanditer,, is responsible of more than 94% of the ment paste.
uncertainty of the setting time for any mix design. The lower The model was validated for cement pastes with water-to-
the water-to-cement ratio, the lower is the influence of the k cement ratios between 0.35 and 0.70. We employed a powerful
netic parameters and the bigger is the contribution of tl@sh probabilistic approach based on polynomial chaos exparsio
of inclusions. However, the total contribution of the mistruic-  propagate the uncertainty of the phase composition, thetikin
ture parameters does not go over 19.6%. The quantitativeephaparameters of hydration, the elastic moduli and the morpho-
composition has a negligible influence and the elastic madul logical parameters through length scales. The polynomial e
the elementary material phases do not contribute at all. pansion allows predicting variability and identifying geeatest

i o o contributors among the uncertain input parameters. Thétses

. The mostlmportant gontrlbutlonto the vgrlablllty oftha®l  gnow that the propagation does not magnify the uncertainty
tic modulus during the first 12 hours (see Fig. 8) comes fr@m th ¢, the single poroelastic properties although, their efation
kinetic parameters and, more precisely, the apparen&licv. 5y amplify the variability of the estimates obtained frdre t
energy of aluminate. The part of variance due to the elastigy,croscopic state equations. In order to reduce the uigrta
moduli of the elementary material phases increases with timys e percolation threshold and the poroelastic propesdie

until the end of hy(_jration. After 18 hours, the elast?c PEAM  4yly-age, engineers should attempt to decrease the aimtgrt
ters govern andt,;, is the greatest source of uncertainty. After ¢ ihe apparent activation energy of calcium aluminate.et.at

36 hours, the second greatest contributor is the elastiataed o, he variability of the poroelastic properties can beuced

of portlandite, and at 96h, approximately 60% of the varanc p,y improying the accuracy of the elastic modulus of LD C-S-H.
IS due toE,,. The microstructure parameters and the quantitaths work is a first step for us towards a probabilistic microp
tive phase composition have negligibléeets. The sensitivity  ,romechanics approach for assessing volume changesyt earl
of the elastic modulus of cement paste does not vary much asgye and risk of cracking directly from relevant featureshaf t
function of the water-to-cement ratio. microstructure of cement-based materials.

negligibleinteraction gfectsbetween these variables. Hence,
only the univariate contributions are considered in thaiséq

The Biot-Willis parameteb exhibits the same decreasing
sensitivity to the apparent activation eneily.,./# (Fig. 9).  Acknowledgements
However, the rate of the increasing part of variance duedo th
elastic moduli is slower. After 12 hours, the quantitativiage Nicolas Venkovic wishes to acknowledge the financial par-
composition starts to influence the uncertainty and thigrcon ticipation of the Natural Sciences and Engineering Re$earc
bution grows until it lies between 14 and 22%, depending orCouncil of Canada (NSERC), the Research Center on Concrete
the water-to-cement ratio. Infrastructures (CRIB) and Phimeca Engineering. The astho
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