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Abstract

Image stereo-rectification is the process by which two images of the same solid scene

undergo homographic transforms, so that their corresponding epipolar lines coincide and

become parallel to the x-axis of image. A pair of stereo-rectified images is helpful for

dense stereo matching algorithms. It restricts the search domain for each match to a line

parallel to the x-axis. Due to the redundant degrees of freedom, the solution to stereo-

rectification is not unique and actually can lead to undesirable distortions or be stuck

in a local minimum of the distortion function. In this paper a robust geometric stereo-

rectification method by a three-step camera rotation is proposed and mathematically ex-

plained. Unlike other methods which reduce the distortion by explicitly minimizing an

empirical measure, the intuitive geometric camera rotation angle is minimized at each

step. For un-calibrated cameras, this method uses an efficient minimization algorithm

by optimizing only one natural parameter, the focal length. This is in contrast with all

former methods which optimize between 3 and 6 parameters. Comparative experiments

show that the algorithm has an accuracy comparable to the state-of-art, but finds the right

minimum in cases where other methods fail, namely when the epipolar lines are far from

horizontal.

1 Introduction

The stereo rectification of an image pair is an important component in many computer vision

applications. The precise 3D reconstruction task requires an accurate dense disparity map,

which is obtained by image registration algorithms. By estimating the epipolar geometry

between two images and performing stereo-rectification, the search domain for registration

algorithms is reduced and the comparison simplified, because horizontal lines with the same

y component in both images are in one to one correspondence. Stereo-rectification methods

simulate rotations of the cameras to generate two coplanar image planes that are in addition

parallel to the baseline.

From the algebraic viewpoint, the rectification is achieved by applying 2D projective

transformations (or homographies) on both images. This pair of homographies is not unique,

because a pair of stereo-rectified images remains stereo-rectified under a common rotation

of both cameras around the baseline. This remaining degree of freedom can introduce an
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undesirable distortion to the rectified images. In the literature, several methods have been

proposed to reduce this distortion. In [8], authors first rectify one image and find another

“matched” homography to rectify the other image. The distortion is reduced by imposing

that one homography is approximately rigid around one point and by minimizing the x-

disparity between both rectified images. In [10], the distortion reduction is improved by

decomposing the homographies into three components: homograhy, similarity and shear.

A projective transformation is sought, as affine as possible to reduce projective distortion,

but the affine distortion is not treated. In [4], a new parametrization of the fundamental

matrix based on two rectification homographies is used to fit the feature correspondences.

The rectification problem is formulated as a 6-parameter non-linear minimization problem.

This method is very compact but no special attention is paid to the distortion reduction. In

[6], the distortion is interpreted as local loss or creation of pixels in the rectified images.

Thus the local area change in the rectified images is minimized. A similar idea is exposed

in [12], whose solution is a homography that can be locally well approximated by a rigid

transformation through the whole image domain. The rectification problem is also studied in

the special situation where the camera projection matrix is known without explicitly reducing

distortion [1, 5]. Although different measures for rectification distortion are proposed in

the above methods, the distortion is minimized explicitly. However it is not clear which

measure would be more appropriate for image rectification. In the method proposed here,

the distortion is not minimized explicitly. The rectification process is decomposed into three

steps. The first step sends both epipoles to infinity; then the epipoles are sent to infinity in

the x-direction; eventually the residual rotation between both cameras around their baseline

is compensated to achieve the rectification. At each step, the camera rotation induces a

homography on each image whose rotation angle is minimized to reduce the distortion. In

contrast with the one-step rotation proposed in [4], we shall see that the three-step rotation

makes the algorithm more robust. Even in extreme cases where the initial epipolar lines are

far from horizontal, the algorithm works well while all other algorithms fail. The method

yields a result, no matter whether the camera calibration matrix is known or not. In the

latter case the proposed method can be easily formulated as a one-parameter minimization

problem under the assumption of square aspect-ratio, zero skewness and image center as

principal point. But unlike some methods treating arbitrary geometry [14, 16], our method

can only treat the case where the epipoles are outside the image domain. The method is

detailed in Section 2. Some results are compared and commented in Section 3 followed by a

conclusion in Section 4.

2 Description of the method

Space or image points will be denoted by lowercase bold letters and matrices by upper-

case bold letters. The rectification works in the two-dimensional projective space P2. A

point is a 3-vector in P2, for example, m = (x,y,w)T , corresponding to the Euclidean point

(x/w,y/w)T . If w = 0, then the point is at infinity in the (x,y) direction. A transformation in

the two-dimensional projective space P2 is a 3× 3 matrix. Examples of such transforma-

tions are the fundamental matrix, denoted by F and homographies denoted by H.

As usual in stereo-rectification, a set of non-degenerate correspondences between image

I1 and I2 are given, permitting to compute the correct fundamental matrix F. For that purpose,

the SIFT algorithm [11] followed by a RANSAC-like algorithm [2, 3, 13] yields a reliable

enough input with inliers only.
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2.1 Rectification geometry

The fundamental matrix corresponds to two stereo-rectified images if and only if it has the

special form (up to a scale factor)

[i]× =





1

0

0





×

=





0 0 0

0 0 −1

0 1 0



 . (1)

Having both cameras pointing to the same direction with their image planes co-planar and

parallel to the baseline is still not sufficient to achieve rectification. Assume the cameras to

have the form P = K[I | 0] and P′ = K′[I | i] with the motion between both cameras being

only the translation along the x-axis. Then the fundamental matrix is proportional to [i]× if

and only if K and K′ have the same second row.

The orientation of the camera can be adjusted by applying a homography on the image,

which has the form:

H = KRK−1 (2)

where R is the relative rotation before and after rectification. Is the rectification achieved

by finding a pair of homographies which sends the epipoles in each image to (1,0,0)T (x-

direction)? The answer is NO. Having the epipoles at (1,0,0)T only means the relationship

between two cameras is a rotation around the baseline and images are generally unrectified.

2.2 Three-step rectification

Assume cameras are not calibrated but have the same simple calibration matrix K before and

after rectification:

K =





f 0 w
2

0 f h
2

0 0 1



 (3)

with w, h the width and height of the image and f the unknown focal length. The funda-

mental matrix F is computed from a group of non-degenerate correspondences between two

images. The epipoles for the left image e = (ex,ey,1)T and right image e′ = (e′x,e
′
y,1)T can

be computed as right and left null vectors of F: Fe = 0 and e′T F = 0.

The idea is to transform both images so that the fundamental matrix gets the form [i]×.

Unlike the other methods which directly parameterize the homographies from the constraints

He = i, H′e′ = i and H′T [i]×H = F and find an optimal pair by minimizing a measure of

distortion, we shall compute the homography by explicitly rotating each camera around its

optical center. The algorithm is decomposed into three steps (Fig. 1):

1. Compute homographies H1 and H′
1 by rotating both cameras respectively so that the

left epipole (ex,ey,1) is transformed to (ex,ey,0) and the right epipole (e′x,e
′
y,1) to

(e′x,e
′
y,0).

2. Rotate both cameras so that (ex,ey,0) is transformed to (1,0,0) and (e′x,e
′
y,0) to

(1,0,0). The corresponding homographies are denoted by H2 and H′
2.

3. Rotate one camera or both cameras together to compensate the residual relative rota-

tion between both cameras around the baseline. The corresponding homographies are

denoted by H3 and H′
3.
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Figure 1: Three-step rectification. First step: the image planes become parallel to CC′.

Second step: the images rotate in their own plane to have their epipolar lines also parallel

to CC′. Third step: a rotation of one of the image planes around CC′ aligns corresponding

epipolar lines in both images. Note how the pairs of epipolar lines become aligned.

For the first step, we have the relationships: H1e = (ex,ey,0)T and H′
1e′ = (e′x,e

′
y,0)T with

H1 = KRK−1 and H′
1 = KR′K−1. The solution for the rotation matrices is not unique. Thus

we determine a rotation matrix with a minimal rotation angle, so that it introduces a minimal

distortion. By rewriting H1e = (ex,ey,0)T as RK−1e = K−1(ex,ey,0)T , the problem is in

fact to find a rotation matrix which rotates the vector a = K−1e to b = K−1(ex,ey,0)T . So

the minimal angle θ is acos( a·b
|a||b| ) and the rotation axis t is a×b

|a||b| . By Rodrigues formula,

the rotation can be written as R(θ , t) = I + sinθ [t]× +(1− cosθ)[t]2×. This process can be

repeated in step 2. After two steps, both epipoles are transformed to (1,0,0)T . Notice that

H1, H′
1, H2 and H′

2 are all parametrized by f .

The rectification is not finished and the fundamental matrix has only 0 in first row and

first column. If the correct K is known and the lens distortion removed, it can be proven that

the remaining relationship between two cameras is a rotation R̂ around the baseline.

Then the new fundamental matrix is F̂ = K−T [i]×R̂K−1 and the corresponding essential

matrix Ê = [i]×R̂. According to [9], R̂ can be extracted from Ê, but an arbitrary K will not

be compatible with F̂ and no rotaion can be extracted. By writing Ê = UDV′, one possible

modification is to force the first two singular values of Ê to be equal and the third one to 0,

which gives ˆ̃E = U





1 0 0

0 1 0

0 0 0



VT and ˆ̃F = K−T ˆ̃EK−1. This modification is the smallest

in the sense of Frobenius norm. Then the third rectification step can be pursued by using the

extracted rotation matrix from ˆ̃E. But this modification can also change a lot the epipolar

geometry. This can be evaluated by checking the sum of distances from the points to the

modified epipolar lines,

S( f ) =
N

∑
i=1

d(x′i, F̃xi)+d(xi, F̃
T x′i) (4)
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with F̃ = H′T
1 H′T

2
ˆ̃FH2H1. An optimal K can be found by minimizing the distance func-

tion S( f ). S( f ) is a non-linear function of the focal length f . The Levenberg-Marquardt

minimization algorithm [17] was chosen to find an optimal f . For more stability and effi-

ciency, the Jacobian matrix
∂S( f )

∂ f
is computed explicitly instead of using a finite difference

scheme. The delicate part of the Jacobian computation is ∂
ˆ̃E

∂ f
, which can be resolved by using

a method proposed in [15]. Once the optimal K is found, H3 and H′
3 can be computed from

the residual rotation.

It might be argued that one step of rotation is enough to rectify the images instead of three

steps. But the three steps procedure makes the algorithm much more robust and, as we shall

see, the residual distortion is equal or only slightly higher. In fact, the idea of parametrization

of the fundamental matrix by just one step of camera rotation is used in [4]. As we will see

in the experiments, this parametrization is not robust when the initial epipolar lines are far

from horizontal.

3 Results

In this section, the algorithm is tested on several pairs of real images. In Table 1, the first

three pairs of images are from Mallon’s test set [12], which are taken by the same camera

under a fixed lens configuration. Concerning the other three pairs of images, the camera

motion causes the initial epipolar lines to be far from the horizontal direction. For all pairs,

enough correct correspondences are available. The fundamental matrix was computed by the

normalized 8-point algorithm [7] and the calibration matrix is unknown. The performance

of the algorithm is compared with Hartley [8]1, Fusiello et al. [4]2 and Mallon et al. [12]3

methods.

The performance is evaluated on two aspects: the rectification error and the introduced

distortion. The rectification error is measured as the average and standard deviation of the

y-disparity of rectified correspondences. The same statistics are computed for the original

epipolar geometry with the distance from points to the corresponding epipolar lines as metric.

The distortion reduction is measured by two traditional criteria: orthogonality and aspect

ratio. Consider the rectification homography H and four cross points a = (w
2
,0,1)T , b =

(w, h
2
,1)T , c = (w

2
,h,1)T , d = (0, h

2
,1)T . with w and h the width and the height of image. The

orthogonality θo is defined as the angle between the vector m = Hb−Hd and n = Hc−Ha:

θo = cos−1
(

m·n
|m||n|

)

. The ideal value of orthogonality is 90◦. By redefining a = (0,0,1)T ,

b = (w,0,1)T , c = (w,h,1)T , d = (0,h,1)T , the aspect ratio rd is the length ratio between

diagonals: rd =
(

(mT m)/((nT n))
)1/2

. The ideal value of the aspect ratio is 1.

We argue that the above criteria are not sufficient. A rectification should also have a

geometric meaning. For some pairs of images, we can deduce the rectified images since the

camera motion is evident. This gives an empirical evaluation of the geometric meaning of

the rectification.

The results are gathered in Table 1. In the first two examples (“Boxes” and “Arch”,

Fig. 2), the performance of the three algorithms are similar except that Hartley’s method

introduces more distortion. This is not surprising because the distortion is just reduced by

1Du Huynh’s version: http://www.csse.uwa.edu.au/˜du/Software/rectification/
2Code available at: http://profs.sci.univr.it/˜fusiello/demo/rect/.
3Only the first three example in Table 1 are tested by Mallon et al.’s since the code is not available.
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minimizing the disparity in x-axis, which is not directly related to distortion. In the third

example (“Drive”), the proposed method has a slightly larger rectification error, but the rec-

tification error is still coherent with the original error and in a reasonable range.

Fusiello et al.’s method is very competitive, in particular for the rectification precision.

But its result does not always have a correct geometric meaning. In the example of “Build-

ing” (Fig. 3) and “Tower”, two pairs of aerial images were taken by a camera installed on

a helicopter. Since the motion is close to the y-axis of the camera, the initial epipolar lines

are close to vertical. In such situation, a correct rectification algorithm should rotate both

cameras so that the baseline is parallel to the x-axis. Only our algorithm rotates the images

and therefore gives a small rectification error. Both Fusiello’s method and Hartley’s method

fail, being stuck in a local minimum. In the example of “Cournot” (Fig. 4), the initial epipo-

lar lines were also far from the horizontal direction. The images should have been rotated

to achieve a good rectification. Even though Fusiello’s method gives a result with a small

rectification error, the geometry of the rectified images is not correct.

Notice that for Hartley’s method the orthogonality of the homography for the right image

is always 90◦. Indeed the right homography has the form GRT where R is a rotation matrix

and T a translation matrix. G is close to a rigid transformation if the epipole is far from the

image domain, which is the case of the images in the experiments. The same phenomenon

can be observed for the orthogonality for the left homography of Fusiello et al.’s method. In

their algorithm, the left camera does not rotate around x-axis. And the rotation around y-axis

and z-axis is also very small if the epipole is far away.

4 Conclusion

A new image rectification algorithm is proposed. This algorithm is decomposed into three

steps of camera rotation. By computing the minimal rotation angle at each step, the distortion

is implicitly limited. This algorithm performs as well as state-of-art algorithms, but for image

pairs where the initial epipolar lines are far from horizontal, the fact that we have a unique

parameter to estimate (focal length) makes the algorithm more robust by reducing the risks

of reaching a local minimum.
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