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Abstract

This work deals with four classical prediction settings, namely full information, bandit,
label efficient and bandit label efficient as well as four different notions of regret: pseudo-
regret, expected regret, high probability regret and tracking the best expert regret. We
introduce a new forecaster, INF (Implicitly Normalized Forecaster) based on an arbitrary
function ψ for which we propose a unified analysis of its pseudo-regret in the four games we
consider. In particular, for ψ(x) = exp(ηx)+ γ

K , INF reduces to the classical exponentially
weighted average forecaster and our analysis of the pseudo-regret recovers known results
while for the expected regret we slightly tighten the bounds. On the other hand with
ψ(x) =

(
η
−x

)q
+ γ

K , which defines a new forecaster, we are able to remove the extraneous
logarithmic factor in the pseudo-regret bounds for bandits games, and thus fill in a long
open gap in the characterization of the minimax rate for the pseudo-regret in the bandit
game. We also provide high probability bounds depending on the cumulative reward of the
optimal action.

Finally, we consider the stochastic bandit game, and prove that an appropriate mod-
ification of the upper confidence bound policy UCB1 (Auer et al., 2002a) achieves the
distribution-free optimal rate while still having a distribution-dependent rate logarithmic
in the number of plays.

Keywords: Bandits (adversarial and stochastic), regret bound, minimax rate, label
efficient, upper confidence bound (UCB) policy, online learning, prediction with limited
feedback.

1. Introduction

This section starts by defining the prediction tasks, the different regret notions that we will
consider, and the different adversaries of the forecaster. We will then recap existing lower
and upper regret bounds for the different settings, and give an overview of our contributions.
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Parameters: the number of arms (or actions) K and the number of rounds n
with n ≥ K ≥ 2.

For each round t = 1, 2, . . . , n

(1) The forecaster chooses an arm It ∈ {1, . . . ,K}, possibly with the help of
an external randomization.

(2) Simultaneously the adversary chooses a gain vector gt = (g1,t, . . . , gK,t) ∈
[0, 1]K (see Section 8 for loss games or signed games).

(3) The forecaster receives the gain gIt,t (without systematically observing
it). He observes

– the reward vector (g1,t, . . . , gK,t) in the full information game,

– the reward vector (g1,t, . . . , gK,t) if he asks for it with the global
constraint that he is not allowed to ask it more than m times for
some fixed integer number 1 ≤ m ≤ n. This prediction game is the
label efficient game,

– only gIt,t in the bandit game,

– only his obtained reward gIt,t if he asks for it with the global con-
straint that he is not allowed to ask it more than m times for some
fixed integer number 1 ≤ m ≤ n. This prediction game is the label
efficient bandit game.

Goal : The forecaster tries to maximize his cumulative gain
∑n

t=1 gIt,t.

Figure 1: The four prediction tasks considered in this work.

1.1 The Four Prediction Tasks

We consider a general prediction game where at each stage, a forecaster (or decision maker)
chooses one action (or arm), and receives a reward from it. Then the forecaster receives
a feedback about the rewards which he can use to make his choice at the next stage. His
goal is to maximize his cumulative gain. In the simplest version, after choosing an arm the
forecaster observes the rewards for all arms, this is the so called full information game. In
the label efficient game, originally proposed by Helmbold and Panizza (1997), after choosing
its action at a stage, the forecaster decides whether to ask for the rewards of the different
actions at this stage, knowing that he is allowed to do it a limited number of times. Another
classical setting is the bandit game where the forecaster only observes the reward of the
arm he has chosen. In its original version (Robbins, 1952), this game was considered in a
stochastic setting, that is, the nature draws the rewards from a fixed product-distribution.
Later it was considered in an adversarial framework (Auer et al., 1995), where there is an
adversary choosing the rewards on the arms. A combination of the two previous settings
is the label efficient bandit game (György and Ottucsák, 2006), in which the only observed
rewards are the ones obtained and asked by the forecaster, with again a limitation on the
number of possible queries. These four games are described more precisely in Figure 1.
Their Hannan consistency has been considered in Allenberg et al. (2006) in the case of
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unbounded losses. Here we will focus on regret upper bounds and minimax policies for
bounded losses.

1.2 Regret and Pseudo-regret

A natural way to assess the performance of a forecaster is to compute his regret with respect
to the best action in hindsight (see Section 7 for a more general regret in which we compare
to the best switching strategy having a fixed number of action-switches):

Rn = max
1≤i≤K

n∑
t=1

(
gi,t − gIt,t

)
.

A lot of attention has been drawn by the characterization of the minimax expected regret
in the different games we have described. More precisely for a given game, let us write sup
for the supremum over all allowed adversaries and inf for the infimum over all forecaster
strategies for this game. We are interested in the quantity:

inf supERn,

where the expectation is with respect to the possible randomization of the forecaster and
the adversary. Another related quantity which can be easier to handle is the pseudo-regret :

Rn = max
1≤i≤K

E
n∑
t=1

(
gi,t − gIt,t

)
.

Note that, by Jensen’s inequality, the pseudo-regret is always smaller than the expected
regret. In Appendix D we discuss cases where the converse inequality holds (up to an
additional term).

1.3 The Different Adversaries

The simplest adversary is the deterministic one. It is characterized by a fixed matrix of nK
rewards corresponding to (gi,t)1≤i≤K,1≤t≤n. Another adversary is the “stochastic” one, in
which the reward vectors are independent and have the same distribution.1 This adversary
is characterized by a distribution on [0, 1]K , corresponding to the common distribution of
gt, t = 1, . . . , n. A more general adversary is the fully oblivious one, in which the reward
vectors are independent. Here the adversary is characterized by n distributions on [0, 1]K

corresponding to the distributions of g1, . . . , gn. Deterministic and stochastic adversaries
are fully oblivious adversaries.

An even more general adversary is the oblivious one, in which the only constraint on the
adversary is that the reward vectors are independent of the past decisions of the forecaster.
The most general adversary is the one who may choose the reward vector gt as a function
of the past decisions I1, . . . , It−1 (non-oblivious adversary).

1. The term “stochastic” can be a bit misleading since the assumption is not just stochasticity but rather
an i.i.d. assumption.
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inf supRn inf supERn
Lower bound Upper bound Lower bound Upper bound

Full information game
√
n logK

√
n logK

√
n logK

√
n logK

Label efficient game n
√

logK
m n

√
logK
m n

√
logK
m n

√
logn
m

Bandit game
√
nK

√
nK logK

√
nK

√
nK log n

Bandit label efficient game n
√

K
m n

√
K logK
m n

√
K
m n

√
K logn
m

Table 1: Existing bounds (apart from the lower bounds in the last line which are proved in
this paper) on the pseudo-regret and expected regret. Except for the full informa-
tion game, there are logarithmic gaps between lower and upper bounds.

1.4 Known Regret Bounds

Table 1 recaps existing lower and upper bounds on the minimax pseudo-regret and the
minimax expected regret for general adversaries (i.e., possibly non-oblivious ones). For
the first three lines, we refer the reader to the book (Cesa-Bianchi and Lugosi, 2006) and
references within, particularly Cesa-Bianchi et al. (1997) and Cesa-Bianchi (1999) for the
full information game, Cesa-Bianchi et al. (2005) for the label efficient game, Auer et al.
(2002b) for the bandit game and György and Ottucsák (2006) for the label efficient bandit
game. The lower bounds in the last line do not appear in the existing litterature, but
we prove them in this paper. Apart from the full information game, the upper bounds are
usually proved on the pseudo-regret. The upper bounds on the expected regret are obtained
by using high probability bounds on the regret. The parameters of the algorithm in the
latter bounds usually depend on the confidence level δ that we want to obtain. Thus to
derive bounds on the expected regret we can not integrate the deviations but rather we have
to take δ of order 1/n, which leads to the gaps involving log(n). Table 1 exhibits several
logarithmic gaps between upper and lower bounds on the minimax rate, namely:

•
√

log(K) gap for the minimax pseudo-regret in the bandit game as well as the label
efficient bandit game.

•
√

log(n) gap for the minimax expected regret in the bandit game as well as the label
efficient bandit game.

•
√

log(n)/ log(K) gap for the minimax expected regret in the label efficient game,

1.5 Contributions of This Work

We reduce the above gaps by improving the upper bounds as shown by Table 2. Different
proof techniques are used and new forecasting strategies are proposed. The most original
contribution is the introduction of a new forecaster, INF (Implicitly Normalized Forecaster),
for which we propose a unified analysis of its regret in the four games we consider. The
analysis is original (it avoids the traditional but scope-limiting argument based on the
simplification of a sum of logarithms of ratios), and allows to fill in the long open gap in the
bandit problems with oblivious adversaries (and with general adversaries for the pseudo-
regret notion). The analysis also applies to exponentially weighted average forecasters. It
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allows to prove a regret bound of order
√
nKS log(nK/S) when the forecaster’s strategy

is compared to a strategy allowed to switch S times between arms, while the best known
bound was

√
nKS log(nK) (Auer, 2002), and achieved for a different policy.

An “orthogonal” contribution is to propose a tuning of the parameters of the forecasting
policies such that the high probability regret bounds holds for any confidence level (instead
of holding just for a single confidence level as in previous works). Bounds on the expected
regret that are deduced from these PAC (“probably approximately correct”) regret bounds
are better than previous bounds by a logarithmic factor in the games with limited informa-
tion (see columns on inf supERn in Tables 1 and 2). The arguments to obtain these bounds
are not fundamentally new and rely essentially on a careful use of deviation inequalities
for supermartingales. They can be used either in the standard analysis of exponentially
weighted average forecasters or in the more general context of INF.

Another “orthogonal” contribution is the proposal of a new biased estimate of the re-
wards in bandit games, which allows to achieve high probability regret bounds depend-
ing on the performance of the optimal arm: in this new bound, the factor n is replaced
by Gmax = maxi=1,...,n

∑n
t=1 gi,t. If the forecaster draws It according to the distribution

pt = (p1,t, . . . , pK,t), then the new biased estimate of gi,t is vi,t = −1IIt=i
β log

(
1− βgi,t

pi,t

)
. This

estimate should be compared to vi,t = gi,t
1IIt=i
pi,t

, for which bounds in terms of Gmax exists

in expectations as shown in (Auer et al., 2002b, Section 3), and to vi,t = gi,t
1IIt=i
pi,t

+ β
pi,t

for some β > 0 for which high probability bounds exist but they are expressed with the n
factor, and not Gmax (see Section 6 of Auer et al., 2002b, and Section 6.8 of Cesa-Bianchi
and Lugosi, 2006).

We also propose a unified proof to obtain the lower bounds in Table 1. The contribution
of this proof is two-fold. First it gives the first lower bound for the label efficient bandit
game. Secondly in the case of the label efficient (full information) game it is a simpler proof
than the one proposed in Cesa-Bianchi et al. (2005). Indeed in the latter proof, the authors
use Birgé’s version of Fano’s lemma to prove the lower bound for deterministic forecasters.
Then the extension to non-deterministic forecasters is done by a generalization of this
information lemma and a decomposition of general forecasters into a convex combination
of deterministic forecasters. The benefit from this proof technique is to be able to deal
with the case K = 2 and K = 3 while the basic version of Fano’s lemma does not give any
information in this case. Here we propose to use Pinsker’s inequality for the case K = 2
and K = 3. This allows us to use the basic version of Fano’s lemma and to extend the
result to non-deterministic forecasters with a simple application of Fubini’s Theorem.

The last contribution of this work is also independent of the previous ones and concerns
the stochastic bandit game (that is the bandit game with “stochastic” adversary). We prove
that a modification of UCB1, Auer et al. (2002a), attains the optimal distribution-free rate√
nK as well as the logarithmic distribution-dependent rate. The key idea, compared to

previous works, is to reduce exploration of sufficiently drawn arms.

1.6 Outline

In Section 2, we describe a new class of forecasters, called INF, for prediction games. Then
we present a new forecaster inside this class, called Poly INF, for which we propose a general
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inf supRn inf supERn High probability
bound on Rn

Label efficient game n
√

logK
m n

√
log(Kδ−1)

m

Bandit game with fully oblivious adversary
√
nK

√
nK

√
nK log(δ−1)

Bandit game with oblivious adversary
√
nK

√
nK

√
nK
logK log(Kδ−1)

Bandit game with general adversary
√
nK

√
nKlogK

√
nK
logK log(Kδ−1)

L.E. bandit with deterministic adversary n
√

K
m n

√
K
m n

√
K
m log(δ−1)

L.E. bandit with oblivious adversary n
√

K
m n

√
K
m n

√
K

m logK log(Kδ−1)

L.E. bandit with general adversary n
√

K
m n

√
K logK
m n

√
K

m logK log(Kδ−1)

Table 2: New regret upper bounds proposed in this work. The high probability bounds are
for a policy of the forecaster that does not depend on the confidence level δ (unlike
previously known high probability bounds).

theorem bounding its regret. A more general statement on the regret of any INF can be
found in Appendix A. Exponentially weighted average forecasters are a special case of INF
as shown in Section 3. In Section 4, we prove that our forecasters and analysis recover the
known results for the full information game.

Section 5 contains the core contributions of the paper, namely all the regret bounds for
the limited feedback games. The interest of Poly INF appears in the bandit games where it
satisfies a regret bound without a logarithmic factor, unlike exponentially weighted average
forecasters. Section 6 provides high probability bounds in the bandit games that depends on
the cumulative reward of the optimal arm: the factor n is replaced by max1≤i≤K

∑n
t=1 gi,t.

In Section 7, we consider a stronger notion of regret, when we compare ourselves to a
strategy allowed to switch between arms a fixed number of times. Section 8 shows how to
generalize our results when one considers losses rather than gains, or signed games.

Section 9 considers a framework fundamentally different from the previous sections,
namely the stochastic multi-armed bandit problem. There we propose a new forecaster,
MOSS, for which we prove an optimal distribution-free rate as well as a logarithmic distribu-
tion-dependent rate.

Appendix A contains a general regret upper bound for INF and two useful technical
lemmas. Appendix B contains the unified proof of the lower bounds. Appendix C contains
the proofs that have not been detailed in the main body of the paper. Finally, Appendix D
gathers the different results we have obtained regarding the relation between the expected
regret and the pseudo-regret.

2. The Implicitly Normalized Forecaster

In this section, we define a new class of randomized policies for the general prediction game.
Let us consider a continuously differentiable function ψ : R∗

− → R∗
+ satisfying

ψ′ > 0, lim
x→−∞

ψ(x) < 1/K, lim
x→0

ψ(x) ≥ 1. (1)
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Lemma 1 There exists a continuously differentiable function C : RK+ → R satisfying for
any x = (x1, . . . , xK) ∈ RK+ ,

max
1≤i≤K

xi < C(x) ≤ max
1≤i≤K

xi − ψ−1 (1/K) , (2)

and
K∑
i=1

ψ(xi − C(x)) = 1. (3)

Proof Consider a fixed x = (x1, . . . , xK). The decreasing function ϕ : c 7→
∑K

i=1 ψ(xi − c)
satisfies

lim
c→ max

1≤i≤K
xi
ϕ(c) > 1 and lim

c→+∞
ϕ(c) < 1.

From the intermediate value theorem, there is a unique C(x) satisfying ϕ(C(x)) = 1. From
the implicit function theorem, the mapping x 7→ C(x) is continuously differentiable.

INF (Implicitly Normalized Forecaster):

Parameters:

• the continuously differentiable function ψ : R∗
− → R∗

+ satisfying (1)

• the estimates vi,t of gi,t based on the (drawn arms and) observed rewards
at time t (and before time t)

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Use the observed reward(s) to build the estimate vt = (v1,t, . . . , vK,t) of

(g1,t, . . . , gK,t) and let: Vt =
∑t

s=1 vs = (V1,t, . . . , VK,t).

(3) Compute the normalization constant Ct = C(Vt).

(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1)
where

pi,t+1 = ψ(Vi,t − Ct).

Figure 2: The proposed policy for the general prediction game.

The implicitly normalized forecaster (INF) is defined in Figure 2. Equality (3) makes
the fourth step in Figure 2 legitimate. From (2), C(Vt) is roughly equal to max1≤i≤K Vi,t.
Recall that Vi,t is an estimate of the cumulative gain at time t for arm i. This means that
INF chooses the probability assigned to arm i as a function of the (estimated) regret. Note
that, in spirit, it is similar to the traditional weighted average forecaster, see for example
Section 2.1 of Cesa-Bianchi and Lugosi (2006), where the probabilities are proportional to
a function of the difference between the (estimated) cumulative reward of arm i and the
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cumulative reward of the policy, which should be, for a well-performing policy, of order
C(Vt).

The interesting feature of the implicit normalization is the following argument, which
allows to recover the results concerning the exponentially weighted average forecasters, and
more interestingly to propose a policy having a regret of order

√
nK in the bandit game

with oblivious adversary. First note that
∑n

t=1

∑K
i=1 pi,tvi,t roughly evaluates the cumulative

reward
∑n

t=1 gIt,t of the policy. In fact, it is exactly the cumulative gain in the bandit game

when vi,t = gi,t
1IIt=i
pi,t

, and its expectation is exactly the expected cumulative reward in the

full information game when vi,t = gi,t. The argument starts with an Abel transformation
and consequently is “orthogonal” to the usual argument given in the beginning of Section
C.2. Letting V0 = 0 ∈ RK . We have

n∑
t=1

gIt,t ≈
n∑
t=1

K∑
i=1

pi,tvi,t

=
n∑
t=1

K∑
i=1

pi,t(Vi,t − Vi,t−1)

=

K∑
i=1

pi,n+1Vi,n +

K∑
i=1

n∑
t=1

Vi,t(pi,t − pi,t+1)

=

K∑
i=1

pi,n+1

(
ψ−1(pi,n+1) + Cn

)
+

K∑
i=1

n∑
t=1

(ψ−1(pi,t+1) + Ct)(pi,t − pi,t+1)

= Cn +
K∑
i=1

pi,n+1ψ
−1(pi,n+1) +

K∑
i=1

n∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1),

where the remarkable simplification in the last step is closely linked to our specific class
of randomized algorithms. The equality is interesting since, from (2), Cn approximates
the maximum estimated cumulative reward max1≤i≤K Vi,n, which should be close to the
cumulative reward of the optimal arm max1≤i≤K Gi,n, where Gi,n =

∑n
t=1 gi,t. Since the

last term in the right-hand side is

K∑
i=1

n∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1) ≈
K∑
i=1

n∑
t=1

∫ pi,t+1

pi,t

ψ−1(u)du =
K∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du, (4)

we obtain

max
1≤i≤K

Gi,n −
n∑
t=1

gIt,t / −
K∑
i=1

pi,n+1ψ
−1(pi,n+1) +

K∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du. (5)

The right-hand side is easy to study: it depends only on the final probability vector and
has simple upper bounds for adequate choices of ψ. For instance, for ψ(x) = exp(ηx) + γ

K
with η > 0 and γ ∈ [0, 1), which corresponds to exponentially weighted average forecasters
as we will explain in Section 3, the right-hand side is smaller than 1−γ

η log
(
K
1−γ
)
+ γCn.

For ψ(x) =
( η
−x
)q

+ γ
K with η > 0, q > 1 and γ ∈ [0, 1), which will appear to be a fruitful
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choice, it is smaller than q
q−1ηK

1/q + γCn. For sake of simplicity, we have been hiding the

residual terms of (4) coming from the Taylor expansions of the primitive function of ψ−1.
However, these terms when added together (nK terms!) are not that small, and in fact
constrain the choice of the parameters γ and η if one wishes to get the tightest bound.

The rigorous formulation of (5) is given in Theorem 27, which has been put in Ap-
pendix A for lack of readability. We propose here its specialization to the function ψ(x) =( η
−x
)q

+ γ
K with η > 0, q > 1 and γ ∈ [0, 1). This function obviously satisfies conditions (1).

We will refer to the associated forecasting strategy as “Poly INF”. Here the (normalizing)
function C has no closed form expression (this is a consequence of Abel’s impossibility theo-
rem). Actually this remark holds in general, hence the name of the general policy. However
this does not lead to a major computational issue since, in the interval given by (2), C(x) is
the unique solution of ϕ(c) = 1, where ϕ : c 7→

∑K
i=1 ψ(xi − c) is a decreasing function. We

will prove that Poly INF forecaster generates nicer probability updates than the exponen-
tially weighted average forecasteras as, for bandits games (label efficient or not), it allows
to remove the extraneous logK factor in the pseudo-regret bounds and some regret bounds.

Theorem 2 (General regret bound for Poly INF) Let ψ(x) =
( η
−x
)q
+ γ
K with q > 1,

η > 0 and γ ∈ [0, 1). Let (vi,t)1≤i≤K, 1≤t≤n be a sequence of nonnegative real numbers,

Bt = max
1≤i≤K

vi,t, and B = max
t
Bt.

If γ = 0 then INF satisfies:(
max
1≤i≤K

n∑
t=1

vi,t

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤
q

q − 1
ηK1/q +

q

2η
exp

(
2
q + 1

η
B

) n∑
t=1

B2
t , (6)

and(
max
1≤i≤K

n∑
t=1

vi,t

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤
q

q − 1
ηK1/q +

qB

η
exp

(
8qB

η

) n∑
t=1

K∑
i=1

pi,tvi,t. (7)

For γ > 0, if we have vi,t =
ct
pi,t

1Ii=It for some random variable ct taking values in [0, c] with

0 < c < qη
( γ
(q−1)K

)(q−1)/q
, then

(1− γ)

(
max
1≤i≤K

n∑
t=1

vi,t

)
− (1 + γζ)

n∑
t=1

K∑
i=1

pi,tvi,t ≤
q

q − 1
ηK

1
q , (8)

where

ζ =
1

(q − 1)K

((q − 1)cKµ(1 + µ)

2γη

)q
,

with

µ = exp

{
2(q + 1)c

η

(
K

γ

)(q−1)/q
(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.
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In all this work, the parameters η, q and γ will be chosen such that ζ and µ act as
numerical constants. To derive concrete bounds from the above theorem, most of the work
lies in relating the left-hand side with the different notions of regret we consider. This
task is trivial for the pseudo-regret. To derive high probability regret bounds, deviation
inequalities for supermartingales are used on top of (6) and (8) (which hold with probability
one). Finally, the expected regret bounds are obtained by integration of the high probability
bounds.

As long as numerical constants do not matter, one can use (7) to recover the bounds
obtained from (6). The advantage of (7) over (6) is that it allows to get regret bounds
where the factor n is replaced by Gmax = maxi=1,...,nGi,n.

3. Exponentially Weighted Average Forecasters

The normalization by division that weighted average forecasters perform is different from
the normalization by shift of the real axis that INF performs. Nonetheless, we can recover
exactly the exponentially weighted average forecasters because of the special relation of the
exponential with the addition and the multiplication.

Let ψ(x) = exp(ηx) + γ
K with η > 0 and γ ∈ [0, 1). Then conditions (1) are clearly

satisfied and (3) is equivalent to exp(−ηC(x)) = 1−γ∑K
i=1 exp(ηxi)

, which implies

pi,t+1 = (1− γ)
exp(ηVi,t)∑K
j=1 exp(ηVi,t)

+
γ

K
.

In other words, for the full information case (label efficient or not), we recover the expo-
nentially weighted average forecaster (with γ = 0) while for the bandit game we recover
EXP3. For the label efficient bandit game, it does not give us the GREEN policy proposed
in Allenberg et al. (2006) but rather the straightforward modification of the exponentially
weighted average forecaster to this game (György and Ottucsák, 2006). Theorem 3 below
gives a unified view on this algorithm for these four games. In the following, we will refer
to this algorithm as the “exponentially weighted average forecaster” whatever the game is.

Theorem 3 (General regret bound for the exponentially weighted average fore-
caster) Let ψ(x) = exp(ηx) + γ

K with η > 0 and γ ∈ [0, 1). Let (vi,t)1≤i≤K, 1≤t≤n be a
sequence of nonnegative real numbers,

Bt = max
1≤i≤K

vi,t, and B = max
1≤t≤n

Bt.

Consider the increasing function Θ : u 7→ eu−1−u
u2

equal to 1/2 by continuity at zero. If
γ = 0 then INF satisfies:(

max
1≤i≤K

n∑
t=1

vi,t

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤
logK

η
+
η

8

n∑
t=1

B2
t , (9)

and (
max
1≤i≤K

n∑
t=1

vi,t

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤
logK

η
+ ηBΘ(ηB)

n∑
t=1

K∑
i=1

pi,tvi,t. (10)
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If we have

γ ≥ KηΘ(ηB)max
i,t

pi,tvi,t, (11)

then INF satisfies:

(1− γ)

(
max
1≤i≤K

n∑
t=1

vi,t

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤ (1− γ)
logK

η
. (12)

We have the same discussion about (9) and (10) than about (6) and (7): Inequality (10)
allows to prove bounds where the factor n is replaced by Gmax = maxi=1,...,nGi,n, but at
the price of worsened numerical constants, when compared to (9). We illustrate this point
in Theorem 4, where (13) and (14) respectively comes from (9) and (10) .

The above theorem relies on the standard argument based on the cancellation of terms
in a sum of logarithms of ratios (see Section C.2). For sake of comparison, we have applied
our general result for INF forecasters, that is Theorem 27 (see Appendix A). This leads
to the same result with worsened constants. Precisely, η8 becomes η

2 exp(2ηB) in (9) while

Θ(ηB) becomes exp(2Bη)[1+exp(2Bη)]
2 in (11). This seems to be the price for having a theorem

applying to a large class of forecasters.

4. The Full Information (FI) Game

The purpose of this section is to illustrate the general regret bounds given in Theorems 2
and 3 in the simplest case, when we set vi,t = gi,t, which is possible since the rewards for
all arms are observed in the full information setting. The next theorem is given explicitly
to show an easy application of Inequalities (9) and (10).

Theorem 4 (Exponentially weighted average forecaster in the FI game) Let ψ(x) =
exp(ηx) with η > 0. Let vi,t = gi,t. Then in the full information game, INF satisfies

max
1≤i≤K

n∑
i=1

gi,t −
n∑
t=1

K∑
i=1

pi,tgi,t ≤
logK

η
+
ηn

8
. (13)

and

max
1≤i≤K

n∑
i=1

gi,t −
n∑
t=1

K∑
i=1

pi,tgi,t ≤
logK

η
+ ηΘ(η)

n∑
t=1

K∑
i=1

pi,tgi,t. (14)

In particular with η =
√

8 logK
n , we get ERn ≤

√
n
2 logK, and there exists η > 0 such that

ERn ≤
√

2EGmax logK.

Proof It comes from (9) and (10) since we have B ≤ 1 and
∑n

t=1B
2
t ≤ n. The only

nontrivial result is the last inequality. It obviously holds for any η when EGmax = 0, and
is achieved for η = log

(
1 +

√
2(logK)/EGmax

)
, when EGmax > 0. Indeed, by taking the
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expectation in (14), we get

E
n∑
t=1

K∑
i=1

pi,tgi,t ≥
ηEGmax − logK

exp(η)− 1
= log

(
1 +

√
2 logK

EGmax

)√
(EGmax)3

2 logK
−
√

EGmax logK

2

≥ EGmax − 2

√
EGmax logK

2
,

where we use log(1 + x) ≥ x− x2

2 for any x ≥ 0 in the last inequality.

Now we consider a new algorithm for the FI game, that is INF with ψ(x) =
( η
−x
)q

and
vi,t = gi,t.

Theorem 5 (Poly INF in the FI game) Let ψ(x) =
( η
−x
)q

with η > 0 and q > 1. Let
vi,t = gi,t. Then in the full information game, INF satisfies:

max
1≤i≤K

n∑
i=1

gi,t −
n∑
t=1

K∑
i=1

pi,tgi,t ≤
q

q − 1
ηK1/q + exp

(4q
η

)qn
2η
. (15)

In particular with q = 3 logK and η = 1.8
√
n logK we get

ERn ≤ 7
√
n logK.

Proof It comes from (6), q + 1 ≤ 2q and
∑n

t=1B
2
t ≤ n.

Remark 6 By using the Hoeffding-Azuma inequality (see, e.g., Lemma A.7 of Cesa-Bianchi
and Lugosi, 2006), one can derive high probability bounds from (13) and (15): for instance,
from (15), for any δ > 0, with probability at least 1− δ, Poly INF satisfies:

Rn ≤ q

q − 1
ηK1/q + exp

(4q
η

)qn
2η

+

√
n log(δ−1)

2
.

5. The Limited Feedback Games

This section provides regret bounds for three limited feedback games: the label efficient
game, the bandit game, and the mixed game, that is the label efficient bandit game.

5.1 Label Efficient Game (LE)

The variants of the LE game consider that the number of queried reward vectors is con-
strained either strictly or just in expectation. This section considers successively these two
cases.
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5.1.1 Constraint on the Expected Number of Queried Reward Vectors

As in Section 4, the purpose of this section is to show how to use INF in order to recover
known minimax bounds (up to constant factors) in a slight modification of the LE game:
the simple LE game, in which the requirement is that the expected number of queried reward
vectors should be less or equal to m.

Let us consider the following policy. At each round, we draw a Bernoulli random variable
Zt, with parameter ε = m/n, to decide whether we ask for the gains or not. Note that we
do not fulfill exactly the requirement of the LE game as we might ask a bit more than m
reward vectors, but we fulfill the one of the simple LE game. We do so in order to avoid
technical details and focus on the main argument of the proof. The exact LE game will be
addressed in Section 5.1.2, where, in addition, we will prove bounds on the expected regret
ERn instead of just the pseudo-regret Rn.

In this section, the estimate of gi,t is vi,t =
gi,t
ε Zt, which is observable since the rewards

at time t for all arms are observed when Zt = 1.

Theorem 7 (Exponentially weighted average forecaster in the simple LE game)

Let ψ(x) = exp(ηx) with η =
√
8m logK
n . Let vi,t =

gi,t
ε Zt with ε = m

n . Then in the simple
LE game, INF satisfies

Rn ≤ n

√
logK

2m
.

Proof The first inequality comes from (9). Since we have Bt ≤ Zt/ε and vi,t =
gi,t
ε Zt, we

obtain (
max
1≤i≤K

n∑
t=1

gi,t
Zt
ε

)
−

n∑
t=1

K∑
i=1

pi,tgi,t
Zt
ε

≤ logK

η
+

η

8ε2

n∑
t=1

Zt,

hence, by taking the expectation of both sides,

Rn =

(
max
1≤i≤K

E
n∑
t=1

gi,t
Zt
ε

)
− E

n∑
t=1

K∑
i=1

pi,tgi,t
Zt
ε

≤ logK

η
+
nη

8ε
=

logK

η
+
n2η

8m
.

Straightforward computations conclude the proof.

A similar result can be proved for the INF forecaster with ψ(x) =
( η
−x
)q
, η > 0 and q

of order logK. We do not state it since we will prove a stronger result in the next section.

5.1.2 Hard Constraint on the Number of Queried Reward Vectors

The goal of this section is to push the idea that by using high probability bounds as an
intermediate step, one can control the expected regret ERn = Emax1≤i≤K

∑n
t=1

(
gi,t−gIt,t

)
instead of just the pseudo-regret Rn = max1≤i≤K E

∑n
t=1

(
gi,t− gIt,t

)
. Most previous works

have obtained results for Rn. These results are interesting for oblivious opponents, that is
when the adversary’s choices of the rewards do not depend on the past draws and obtained
rewards, since in this case Proposition 33 in Appendix D shows that one can extend bounds
on the pseudo-regret Rn to the expected regret ERn. For non-oblivious opponents, upper
bounds on Rn are rather weak statements and high probability bounds on Rn or bounds on
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ERn are desirable. In Auer (2002) and Cesa-Bianchi and Lugosi (2006), high probability
bounds on Rn have been given. Unfortunately, the policies proposed there are depending
on the confidence level of the bound. As a consequence, the resulting best bound on ERn,
obtained by choosing the policies with confidence level parameter of order 1/n, has an
extraneous log n term. Specifically, from Theorem 6.2 of Cesa-Bianchi and Lugosi (2006),

one can immediately derive ERn ≤ 8n

√
log(4K)+log(n)

m + 1. The theorems of this section
essentially show that the log n term can be removed.

As in Section 5.1.1, we still use a draw of a Bernoulli random variable Zt to decide
whether we ask for the gains or not. The difference is that, if

∑t−1
s=1 Zs ≥ m, we do not ask

for the gains (as we are not allowed to do so). To avoid that this last constraint interferes
in the analysis, the parameter of the Bernoulli random variable is set to ε = 3m

4n and the
probability of the event

∑n
t=1 Zt > m is upper bounded. The estimate of gi,t remains

vi,t =
gi,t
ε Zt.

Theorem 8 (Exponentially weighted average forecaster in the LE game) Let ψ(x) =

exp(ηx) with η =
√
m logK
n . Let vi,t =

gi,t
ε Zt with ε = 3m

4n . Then in the LE game, for any
δ > 0, with probability at least 1− δ, INF satisfies:

Rn ≤ n

√
27 log(2Kδ−1)

m
,

and

ERn ≤ n

√
27 log(6K)

m
.

Theorem 9 (Poly INF in the LE game) Let ψ(x) =
( η
−x
)q

with q = 3 log(2K) and

η = 2n

√
log(2K)
m . Let vi,t =

gi,t
ε Zt with ε =

3m
4n . Then in the LE game, for any δ > 0, with

probability at least 1− δ, INF satisfies:

Rn ≤
(
8−

√
27
)
n

√
log(2K)

m
+ n

√
27 log(2Kδ−1)

m
,

and

ERn ≤ 8n

√
log(6K)

m
.

5.2 Bandit Game

This section is cut into two parts. In the first one, from Theorem 2 and Theorem 3, we
derive upper bounds on the pseudo-regret Rn = max1≤i≤K E

∑n
t=1

(
gi,t − gIt,t

)
. To bound

the expected regret ERn = Emax1≤i≤K
∑n

t=1

(
gi,t−gIt,t

)
, we will then use high probability

bounds on top of the use of these theorems. Since this makes the proofs more intricate, we
have chosen to provide the less general results, but easier to obtain, in Section 5.2.1 and
the more general ones in Section 5.2.2.

The main results here are that, by using the INF with a polynomial function ψ, we
obtain an upper bound of order

√
nK for Rn, which imply a bound of order

√
nK on ERn

for oblivious adversaries (Proposition 33 in Appendix D). In the general case (containing
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the non-oblivious opponent), we show an upper bound of order
√
nK logK on ERn. We

conjecture that this bound cannot be improved, that is the opponent may take advantage of
the past to make the player pay a regret with the extra logarithmic factor (see Remark 14).

5.2.1 Bounds on the Pseudo-regret

In this section, the estimate of gi,t is vi,t =
gi,t
pi,t

1IIt=i, which is observable since the reward

gIt,t is revealed at time t.

Theorem 10 (Exponentially weighted average forecaster in the bandit game) Let
ψ(x) = exp(ηx) + γ

K with 1 > γ ≥ 4ηK
5 > 0. Let vi,t =

gi,t
pi,t

1IIt=i. Then in the bandit game,

INF satisfies:

Rn ≤ logK

η
+ γ max

1≤i≤K
EGi,n.

In particular, for γ = min
(
1
2 ,
√

4K logK
5n

)
and η =

√
5 logK
4nK , we have

Rn ≤
√

16

5
nK logK.

Proof One simply needs to note that for 5γ ≥ 4Kη, (11) is satisfied (since B = K/γ), and
thus (12) can be rewritten into

(1− γ)

(
max
1≤i≤K

n∑
t=1

gi,t
pi,t

1IIt=i

)
−

n∑
t=1

gIt,t ≤ (1− γ)
logK

η
.

By taking the expectation, we get

Rn ≤ (1− γ)
logK

η
+ γ max

1≤i≤K
EGi,n.

For the numerical application, since Rn ≤ n, the bound is trivial
√

(4K logK)/(5n) < 1
2 .

Otherwise, it is a direct application of the general bound.

Theorem 11 (Poly INF in the bandit game) Consider ψ(x) =
( η
−x
)q

+ γ
K with γ =

min
(
1
2 ,
√

3K
n

)
, η =

√
5n and q = 2. Let vi,t =

gi,t
pi,t

1IIt=i. Then in the bandit game, INF

satisfies:
Rn ≤ 8

√
nK.

Proof The bound is trivial when 1
2 ≤

√
3K
n . So we consider hereafter that γ =

√
3K
n < 1

2 .

By taking the expectation in (8) and letting Ḡmax = max1≤i≤K EGi,n, we obtain that for
γ > (q − 1)K(qη)q/(1−q) > 0 (condition coming from the condition on c for (8)),

(1− γ)Ḡmax − (1 + γζ)E
n∑
t=1

gIt,t ≤
q

q − 1
ηK

1
q ,
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with

ζ =
1

(q − 1)K

((q − 1)Kµ(1 + µ)

2γη

)q
,

and

µ = exp

{
2(q + 1)

η

(
K

γ

)(q−1)/q
(
1− 1

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤ γ(1 + ζ)Ḡmax +
q

q − 1
ηK

1
q ≤ γ(1 + ζ)n+

q

q − 1
ηK

1
q .

The desired inequality is trivial when
√
K/n ≥ 1/8. So we now consider that

√
K/n < 1/8.

For γ =
√

3K/n, η =
√
5n and q = 2, the condition on γ is satisfied (since

√
K/n < 1/8),

and we have 1
η (

K
γ )

(q−1)/q ≤ 0.121, hence µ ≤ 2.3, ζ ≤ 1 and Rn ≤ 8
√
nK.

We have arbitrarily chosen q = 2 to provide an explicit upper bound. More generally,
it is easy to check from the proof of Theorem 11 that for any real number q > 1, we obtain
the convergence rate

√
nK, provided that γ and η are respectively taken of order

√
K/n

and
√
nK/K1/q.

5.2.2 High Probability Bounds and Bounds on the Expected Regret

Theorems 10 and 11 provide upper bounds on Rn = max1≤i≤K E
∑n

t=1

(
gi,t − gIt,t

)
. To

bound ERn = Emax1≤i≤K
∑n

t=1

(
gi,t− gIt,t

)
, we will use high probability bounds. First we

need to modify the estimates of gi,t by considering vi,t =
gi,t
pi,t

1IIt=i +
β
pi,t

with 0 < β ≤ 1, as

was proposed in Auer (2002),2 or vi,t = −1IIt=i
β log

(
1− βgi,t

pi,t

)
as we propose here.

Theorem 12 (Exponentially weighted average forecaster in the bandit game)

Consider ψ(x) = exp(ηx) + γ
K with γ = min

(
2
3 , 2

√
K log(3K)

n

)
and η = 2

√
log(3K)
Kn . Let

vi,t = −1IIt=i
β log

(
1 − βgi,t

pi,t

)
with β =

√
log(3K)
2Kn . Then in the bandit game, against any

adversary (possibly a non-oblivious one), for any δ > 0, with probability at least 1− δ, INF
satisfies:

Rn ≤ 3
√
nK log(3K) +

√
2nK

log(3K)
log(Kδ−1),

and also ERn ≤ (3 +
√
2)
√
nK log(3K).

This theorem is similar to Theorem 6.10 of Cesa-Bianchi and Lugosi (2006). The main
difference here is that the high probability bound holds for any confidence level, and not

2. The technical reason for this modification, which may appear surprising as it introduces a bias in the
estimate of gi,t, is that it allows to have high probability upper bounds with the correct rate on the
difference

∑n
t=1 gi,t −

∑n
t=1 vi,t. A second reason for this modification (but useless for this particular

section) is that it allows to track the best expert (see Section 7).
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only for a confidence level depending on the algorithm. As a consequence, our algorithm,
unlike the one proposed in previous works, satisfies both a high probability bound and an
expected regret bound of order

√
nK log(K).

Theorem 13 (Poly INF in the bandit game) Let ψ(x) =
( η
−x
)q

+ γ
K with η = 2

√
n,

q = 2 and γ = min
(
1
2 , 3
√

K
n

)
. Consider vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2Kn
. Then

in the bandit game, against a deterministic adversary, for any δ > 0, with probability at
least 1− δ, INF satisfies:

Rn ≤ 9
√
nK +

√
2nK log(δ−1). (16)

Against an oblivious adversary, it satisfies

ERn ≤ 10
√
nK. (17)

Moreover in the general case (containing the non-oblivious opponent), with the following

parameters q = 2, γ = min
(
1
2 , 3

√
K log(3K)

n

)
, η = 2

√
n

log(3K) and β =

√
log(3K)
2nK , it satisfies

with probability at least 1− δ,

Rn ≤ 9
√
nK log(3K) +

√
2nK

log(3K)
log(δ−1),

and
ERn ≤ 9

√
nK log(3K).

Remark 14 We conjecture that the order
√
nK logK of the bound on ERn cannot be im-

proved in the general case containing the non-oblivious opponent. Here is the main argu-
ment to support our conjecture. Consider an adversary choosing all rewards to be equal to
one until time n/2 (say n is even to simplify). Then, let k̂ denote the arm for which
the estimate Vi,n/2 =

∑
1≤t≤n/2 vi,t of the cumulative reward of arm i is the smallest.

After time n/2, all rewards are chosen to be equal to zero except for arm k̂ for which
the rewards are still chosen to be equal to 1. Since we believe that with high probability,
max1≤i≤K Vi,n/2 − minj∈{1,...,K} Vj,n/2 ≥ κ

√
nK logK for some small enough κ > 0, it

seems that the INF algorithm achieving a bound of order
√
nK on ERn in the oblivious

setting will suffer an expected regret of order at least
√
nK logK. While this does not prove

the conjecture as one can design other algorithms, it makes the conjecture likely to hold.

5.3 Label Efficient Bandit Game (LE Bandit)

The following theorems concern the simple LE bandit game, in which the requirement is
that the expected number of queried rewards should be less or equal to m. We consider the
following policy. At each round, we draw a Bernoulli random variable Zt, with parameter
ε = m/n, to decide whether the gain of the chosen arm is revealed or not. Note that this
policy does not fulfil exactly the requirement of the LE bandit game as we might ask a bit
more than m rewards, but, as was argued in Section 5.1.2, it can be modified in order to
fulfil the hard constraint of the game. The theoretical guarantees are then the same (up to
numerical constant factors).
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Theorem 15 (Exponentially weighted average forecaster in the simple LE bandit

game) Let ψ(x) = exp(ηx) + γ
K with γ = min

(
1
2 ,
√

4K logK
5m

)
and η = 1

n

√
5m logK

4K . Let

vi,t = gi,t
1IIt=i
pi,t

Zt
ε with ε = m

n . Then in the simple LE bandit game, INF satisfies:

Rn ≤ n

√
16K logK

5m
.

Proof One simply needs to note that for 5γ ≥ 4Kη
ε , (11) is satisfied, and thus by taking

the expectation in (12), we get

Rn ≤ (1− γ)
logK

η
+ γE max

1≤i≤K
Vi,n ≤ (1− γ)

logK

η
+ γn.

We thus have

Rn ≤ n

m

(
(1− γ)

logK

η/ε
+ γm

)
.

The numerical application for the term in parenthesis is then exactly the same as the one
proposed in the proof of Theorem 10 (with n and η respectively replaced by m and η/ε).

Theorem 16 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x
)q
+ γ
K with

γ = min
(
1
2 ,
√

3K
m

)
, η = n

√
5
m and q = 2. Let vi,t = gi,t

1IIt=i
pi,t

Zt
ε with ε = m

n . Then in the

simple LE bandit game, INF satisfies:

Rn ≤ 8n

√
K

m
.

Proof By taking the expectation in (8) and letting Ḡmax = max1≤i≤K EGi,n, we obtain
that for γ > (q − 1)K(qηε)q/(1−q) > 0 (condition coming from the condition on c for (8)),

(1− γ)Ḡmax − (1 + γζ)E
n∑
t=1

gIt,t ≤
q

q − 1
ηK

1
q ,

with

ζ =
1

(q − 1)K

((q − 1)Kµ(1 + µ)

2γηε

)q
,

and

µ = exp

{
2(q + 1)

ηε

(
K

γ

)(q−1)/q
(
1− 1

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤ n

m

(
γ(1 + ζ)m+

q

q − 1
(ηε)K

1
q

)
.

The numerical application for the term in parenthesis is exactly the same than the one
proposed in the proof of Theorem 11 (with n and η respectively replaced by m and ηε).
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Both previous theorems only consider the pseudo-regret. By estimating gi,t differently,
we obtain the following result for the regret.

Theorem 17 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x
)q
+ γ
K with

η = 2n/
√
m, q = 2 and γ = min

(
1
2 , 3
√

K
m

)
. Consider vi,t = −1IIt=iZt

β log
(
1 − βgi,t

εpi,t

)
with

β = 1
n

√
m
2K . Then in the simple LE bandit game, against a deterministic adversary, for

any δ > 0, with probability at least 1− δ, INF satisfies:

Rn ≤ 10.7n

√
K

m
+ 3.1n

√
K

m
log(δ−1).

Against an oblivious adversary, it satisfies

ERn ≤ 13
√
nK.

Moreover in the general case (containing the non-oblivious opponent), with the following

parameters q = 2, γ = min
(
1
2 , 3

√
K log(3K)

m

)
, η = 2n/

√
m log(3K) and β = 1

n

√
m log(3K)

2K ,

it satisfies with probability at least 1− δ,

Rn ≤ 10n

√
K log(3K)

m
+ 3.5n

√
K

m log(3K)
log(δ−1),

and

ERn ≤ 13n

√
log(3K)

m
.

A similar result can be obtained for Exp INF, at the price of an additional logarithmic
term in K against oblivious (deterministic or not) adversaries. We omit the details.

6. Regret Bounds Scaling with the Optimal Arm Rewards

In this section, we provide regret bounds for bandit games depending on the performance
of the optimal arm: in these bounds, the factor n is essentially replaced by

Gmax = max
i=1,...,n

Gi,n,

where Gi,n =
∑n

t=1 gi,t. Such a bound has been proved on the expected regret for determin-
istic adversaries in the seminal work of Auer et al. (2002b). Here, by using a new biased

estimate of gi,t, that is vi,t = −1IIt=i
β log

(
1 − βgi,t

pi,t

)
, we obtain a bound holding with high

probability and we also consider its extension to any adversary.
The bounds presented here are especially interesting when Gmax ≪ n: this typically

occurs in online advertizing where the different arms are the ads that can be put on the
website and where the probability that a user clicks on an ad banner (and thus induces a
reward to the webpage owner) is very low. For deterministic adversaries, as in the bandit
game, the logK factor appearing in the exponentially weighted average forecaster regret
bound disappears in the Poly INF regret bound as follows.
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Theorem 18 Let G0 be a real number such that G0 ≥ 81K. Let ψ(x) =
( η
−x
)q

+ γ
K with

η = 2
√
G0, q = 2 and γ = 3

√
K
G0

. Let vi,t = −1IIt=i
β log

(
1− βgi,t

pi,t

)
with β = 1√

2KG0
. Then in

the bandit game, against a deterministic adversary, for any δ > 0, with probability at least
1− δ, INF satisfies:

Rn ≤ 4.5

√
K
G2

max

G0
+ 4
√
KG0 +

√
2KG0 log(δ

−1). (18)

For fully oblivious adversaries, for any δ > 0, with probability at least 1− δ, INF satisfies:

Rn ≤ 4.5

√
K
G2

max

G0
+ 4
√
KG0 +

√
2KG0 log(2δ

−1) +
√

8 log(2Kδ−1)Gmax. (19)

For the choice G0 = n, the high probability upper bounds are of the order of
√
nK +√

nK log(δ−1). The interest of the theorem is to provide a policy which, for small Gmax,
leads to smaller regret bounds, as long as G0 is taken much smaller than n and but not
much smaller than Gmax. For deterministic adversaries, Gmax is nonrandom, and provided
that we know its order, one has interest of taking G0 of this order. Precisely, we have the
following corollary for deterministic adversaries.

Corollary 19 Let ψ(x) =
( η
−x
)q

+ γ
K with η = 2

√
Gmax, q = 2 and γ = min

(
1
2 , 3
√

K
Gmax

)
.

Consider vi,t = −1IIt=i
β log

(
1− βgi,t

pi,t

)
with β = 1√

2KGmax
. Then in the bandit game, against

a deterministic adversary, for any δ > 0, with probability at least 1− δ, INF satisfies:

Rn ≤ 9
√
KGmax +

√
2KGmax log(δ

−1), (20)

and

ERn ≤ 10
√
KGmax. (21)

For more general adversaries than fully oblivious ones, we have the following result in
which the logK factor reappears.

Theorem 20 Let G0 ≥ 81K log(3K). Let ψ(x) =
( η
−x
)q

+ γ
K with q = 2, γ = 3

√
K log(3K)

G0

and η = 2
√

G0
log(3K) . Let vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0

. Then in the bandit

game, against any adversary (possibly a non-oblivious one), for any δ > 0, with probability
at least 1− δ, INF satisfies:

Rn ≤ 9

2

√
G2

max

G0
K log(3K) + 4

√
KG0

log(3K)
+

√
2KG0

log(3K)
log(Kδ−1).

This last result concerning Poly INF is similar to the following one concerning the
exponentially weighted average forecaster: the advantage of Poly INF only appears when it
allows to remove the logK factor.
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Theorem 21 Let G0 > 4K log(3K). Let ψ(x) = exp(ηx) + γ
K with γ = 2

√
K log(3K)

G0
and

η = 2
√

log(3K)
KG0

. Let vi,t = −1IIt=i
β log

(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0

. Then in the bandit game,

against any adversary (possibly a non-oblivious one), for any δ > 0, with probability at least
1− δ, INF satisfies:

Rn ≤ 5

2

√
G2

max

G0
K log(3K) +

1

2

√
KG0 log(3K) +

√
2KG0

log(3K)
log(Kδ−1).

7. Tracking the Best Expert in the Bandit Game

In the previous sections, the cumulative gain of the forecaster was compared to the cumu-
lative gain of the best single expert. Here, it will be compared to more flexible strategies
that are allowed to switch actions. We will use

vi,t = gi,t
1IIt=i
pi,t

+
β

pi,t
,

with 0 < β ≤ 1. The β term introduces a bias in the estimate of gi,t, that constrains the
differences max1≤i≤K Vi,t − min1≤j≤K Vj,t to be relatively small. This is the key property
in order to track the best switching strategy, provided that the number of switches is not
too large. A switching strategy is defined by a vector (i1, . . . , in) ∈ {1, . . . ,K}n. Its size is
defined by

S(i1, . . . , in) =
n−1∑
t=1

1Iit+1 ̸=it ,

and its cumulative gain is

G(i1,...,in) =
n∑
t=1

git,t.

The regret of a forecaster with respect to the best switching strategy with S switches is
then given by:

RSn = max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in) −
n∑
t=1

gIt,t.

Theorem 22 (INF for tracking the best expert in the bandit game)
Let s = S log

(
3nK
S

)
+2 logK with the natural convention S log(3nK/S) = 0 for S = 0. Let

vi,t = gi,t
1IIt=i
pi,t

+ β
pi,t

with β = 3
√

s
nK . Let ψ(x) = exp(ηx) + γ

K with γ = min
(
1
2 ,
√

Ks
2n

)
and η = 1

5

√
s
nK . Then in the bandit game, for any 0 ≤ S ≤ n − 1, for any δ > 0, with

probability at least 1− δ, INF satisfies:

RSn ≤ 7
√
nKs+

√
nK

s
log(δ−1),

and

ERSn ≤ 7
√
nKs.
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Note that for S = 0, we have RSn = Rn, and we recover an expected regret bound of
order

√
nK logK similar to the one of Theorem 12.

Remark 23 Up to constant factors, the same bounds as the ones of Theorem 22 can be
obtained (via a tedious proof not requiring new arguments than the ones presented in this

work) for the INF forecaster using ψ(x) = c1
K

(√
snK
−x

)c3s
+ c2

√
s
nK , with s = S log

(
enK
S

)
+

log(2K) and appropriate constants c1, c2 and c3.

8. Gains vs Losses, Unsigned Games vs Signed Games

To simplify, we have considered so far that the rewards were in [0, 1]. Here is a trivial
argument which shows how to transfer our analysis to loss games (i.e., games with only
non-positive rewards), and more generally to signed games (i.e., games in which the rewards
can be positive and negative). If the rewards, denoted now g′i,t, are in some interval [a, b]

potentially containing zero, we set gi,t =
g′i,t−a
b−a ∈ [0, 1]. Then we can apply our analysis to:

max
i∈{1,...,K}

n∑
t=1

gi,t −
n∑
t=1

gIt,t =
1

b− a

(
max

i∈{1,...,K}

n∑
t=1

g′i,t −
n∑
t=1

g′It,t

)
.

A less straightforward analysis can be done by looking at the INF algorithm directly
applied to the observed rewards (and not to the renormalized rewards). In this case, as it
was already noted in Remark 6.5 of Cesa-Bianchi and Lugosi (2006), the behavior of the
algorithm may be very different for loss and gain games. However it can be proved that our
analysis still holds up to constant factors (one has to go over the proofs and make appropriate
modifications since for simplicity, we have presented the general results concerning INF
under the assumptions that the estimates vi,t are nonnegative). In Section 6, we provide
regret bounds scaling with the cumulative reward of the optimal arm. For this kind of
results, renormalizing will not lead to regret bounds scaling with the cumulative reward
before renormalization of the optimal arm, and consequently, the study of INF directly
applied to the observed rewards is necessary. In particular, obtaining low regret bounds
when the optimal arm has small cumulative loss would require appropriate modifications in
the proof.

9. Stochastic Bandit Game

By considering the deterministic case when the rewards are gi,t = 1 if i = 1 and gi,t = 0
otherwise, it can be proved that the INF policies considered in Theorem 10 and Theorem 11
have a pseudo-regret lower bounded by

√
nK. In this simple setting, and more generally in

most of the stochastic multi-armed bandit problems, one would like to suffer a much smaller
regret.

We recall that in the stochastic bandit considered in this section, the rewards gi,1, . . . , gi,n
are independent and drawn from a fixed distribution νi on [0, 1] for each arm i, and the
reward vectors g1, . . . , gn are independent.3 The suboptimality of an arm i is then measured

3. Note that we do not assume independence of g1,t, . . . , gK,t for each t. This assumption is usually made
in the literature, but is often useless. In our work, assuming it would just have improved Proposition 36
by a constant factor, and would not have improved the constant in Theorem 24.
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by ∆i = max1≤j≤K µj−µi where µi is the mean of νi. We provide now a strategy achieving a√
nK regret in the worst case, and a much smaller regret as soon as the ∆i of the suboptimal

arms are much larger than
√
K/n.

Let µ̂i,s be the empirical mean of arm i after s draws of this arm. Let Ti(t) denote the
number of times we have drawn arm i on the first t rounds. In this section, we propose a
policy, called MOSS (Minimax Optimal Strategy in the Stochastic case), inspired by the
UCB1 policy (Auer et al., 2002a). As in UCB1, each arm has an index measuring its
performance, and at each round, we choose the arm having the highest index. The only
difference with UCB1 is to use log

(
n
Ks

)
instead of log(t) at time t (see Figure 3). As a

consequence, an arm that has been drawn more than n/K times has an index equal to the
empirical mean of the rewards obtained from the arm, and when it has been drawn close
to n/K times, the logarithmic term is much smaller than the one of UCB1, implying less
exploration of this already intensively drawn arm.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an arm i, define its index Bi,s by

Bi,s = µ̂i,s +

√
max

(
log( n

Ks ) , 0
)

s
.

for s ≥ 1 and Bi,0 = +∞.

At time t, draw an arm maximizing Bi,Ti(t−1).

Figure 3: The proposed policy for the stochastic bandit game.

Theorem 24 Introduce ∆ = min
i∈{1,...,K}:∆i>0

∆i. MOSS satisfies

Rn ≤ 23K

∆
log

(
max

(
110n∆2

K
, 104

))
, (22)

and
ERn ≤ 25

√
nK. (23)

Besides, if there exists a unique arm with ∆i = 0, we also have

ERn ≤ 23K

∆
log

(
max

(
140n∆2

K
, 104

))
. (24)

The distribution-dependent bounds Inequalities (22) and (24) show the desired logarith-
mic dependence in n, while the distribution-free regret bound (23) has the minimax rate√
nK.

Remark 25 The uniqueness of the optimal arm is really needed to have the logarithmic
(in n) bound on the expected regret. This can be easily seen by considering a two-armed
bandit in which both reward distributions are identical (and non degenerated). In this case,
the pseudo-regret is equal to zero while the expected regret is of order

√
n. This reveals a

fundamental difference between the expected regret and the pseudo-regret.
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Remark 26 A careful tuning of the constants in front and inside the logarithmic term of
Bi,s and of the thresholds used in the proof leads to smaller numerical constants in the
previous theorem, and in particular to supERn ≤ 6

√
nK. However, it makes the proof

more intricate. So we will only prove (23).
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Appendix A. The General Regret Upper Bound of INF

Theorem 27 (INF regret upper bound) For any nonnegative real numbers vi,t, where
i ∈ {1, . . . ,K} and t ∈ N∗, we still use vt = (v1,t, . . . , vK,t) and Vt =

∑t
s=1 vt. Define

[Vt−1, Vt] = {λVt−1 + (1− λ)Vt : λ ∈ [0, 1]}. Let

Bt = max
1≤i≤K

vi,t,

ρ = max
1≤t≤n

max
v,w∈[Vt−1,Vt], 1≤i≤K

ψ′(vi − C(v))

ψ′(wi − C(w))
,

and

At = min

(
B2
t

K∑
i=1

ψ′ ◦ ψ−1(pi,t), (1 + ρ2)
K∑
i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t

)
.

Then the INF forecaster based on ψ satisfies:

max
1≤i≤K

Vi,n ≤ Cn ≤
n∑
t=1

K∑
i=1

pi,tvi,t−
K∑
i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
+
ρ2

2

n∑
t=1

At.

(25)

Proof In the following we set V0 = 0 ∈ RK+ and C0 = C(V0). The proof is divided into
four steps.

First step: Rewriting
∑n

t=1

∑K
i=1 pi,tvi,t.
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We start with a simple Abel transformation:

n∑
t=1

K∑
i=1

pi,tvi,t =
n∑
t=1

K∑
i=1

pi,t(Vi,t − Vi,t−1)

=

K∑
i=1

pi,n+1Vi,n +

K∑
i=1

n∑
t=1

Vi,t(pi,t − pi,t+1)

=

K∑
i=1

pi,n+1

(
ψ−1(pi,n+1) + Cn

)
+

K∑
i=1

n∑
t=1

(ψ−1(pi,t+1) + Ct)(pi,t − pi,t+1)

= Cn +
K∑
i=1

pi,n+1ψ
−1(pi,n+1) +

K∑
i=1

n∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1)

where the last step comes from the fact that
∑K

i=1 pi,t = 1.

Second step: A Taylor-Lagrange expansion.

For x ∈ [0, 1] we define f(x) =
∫ x
0 ψ

−1(u)du. Remark that f ′(x) = ψ−1(x) and f ′′(x) =
1/ψ′(ψ−1(x)). Then by the Taylor-Lagrange formula, we know that for any i, there exists
p̃i,t+1 ∈ [pi,t, pi,t+1] (with the convention [a, b] = [b, a] when a > b) such that

f(pi,t) = f(pi,t+1) + (pi,t − pi,t+1)f
′(pi,t+1) +

(pi,t − pi,t+1)
2

2
f ′′(p̃i,t+1),

or, in other words:

(pi,t − pi,t+1)ψ
−1(pi,t+1) =

∫ pi,t

pi,t+1

ψ−1(u)du− (pi,t − pi,t+1)
2

2ψ′(ψ−1(p̃i,t+1))
.

Now by summing over t the first term on the right-hand side becomes
∫ 1/K
pi,n+1

ψ−1(u)du.

Moreover, since x → ψ(x − C(x)) is continuous, there exists W (i,t) ∈ [Vt, Vt+1] ⊂ RK such

that ψ
(
W

(i,t)
i − C(W (i,t))

)
= p̃i,t+1. Thus we have

K∑
i=1

n∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1) =

K∑
i=1

∫ 1/K

pi,n+1

ψ−1(u)du−
K∑
i=1

n∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) .
From the equality obtained in the first step, it gives

Cn −
n∑
t=1

K∑
i=1

pi,tvi,t = −
K∑
i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)

+

K∑
i=1

n∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) .
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Third step: The mean value theorem to compute (pi,t+1 − pi,t)
2.

It is now convenient to consider the functions fi and hi defined for any x ∈ RK+ by

fi(x) = ψ(xi − C(x)) and hi(x) = ψ′(xi − C(x)).

We are going to bound pi,t+1 − pi,t = fi(Vt) − fi(Vt−1) by using the mean value theorem.
To do so we need to compute the gradient of fi. First, we have

∂fi
∂xj

(x) =

(
1Ii=j −

∂C

∂xj
(x)

)
hi(x).

Now, by definition of C, we have
∑K

k=1 fk(x) = 1 and thus
∑K

k=1
∂fk
∂xj

(x) = 0, which implies

∂C

∂xj
(x) =

hj(x)∑K
k=1 hk(x)

and
∂fi
∂xj

(x) =

(
1Ii=j −

hj(x)∑K
k=1 hk(x)

)
hi(x).

Now the mean value theorem says that there exists V (i,t) ∈ [Vt−1, Vt] such that

fi(Vt)− fi(Vt−1) =

K∑
j=1

vj,t
∂fi
∂xj

(V (i,t)).

Thus we have

(pi,t − pi,t+1)
2 =

 K∑
j=1

vj,t

(
1Ii=j −

hj(V
(i,t))∑K

k=1 hk(V
(i,t))

)
hi(V

(i,t))

2

= hi(V
(i,t))2

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

.
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Fourth step: An almost variance term.

We introduce ρ = maxv,w∈[Vt−1,Vt], 1≤t≤n, 1≤i≤K
hi(v)
hi(w)

. Thus we have

K∑
i=1

n∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W

(i,t)
i − C(W (i,t))

) =

K∑
i=1

n∑
t=1

hi(V
(i,t))2

2hi(W (i,t))

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

≤ ρ2

2

n∑
t=1

K∑
i=1

hi(Vt−1)

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

.

Now we need to control the term

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

. Remark that since the

function ψ is increasing we know that hi(x) ≥ 0,∀x. Now since we have 0 ≤ vi,t ≤ Bt,
we can simply bound this last term by B2

t . A different bound can be obtained by using
(a− b)2 ≤ a2 + b2 when a and b have the same sign:(

vi,t −
∑K

j=1 vj,thj(V
(i,t))∑K

k=1 hk(V
(i,t))

)2

≤ v2i,t +

(∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

≤ v2i,t +

∑K
j=1 v

2
j,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

≤ v2i,t + ρ2
∑K

j=1 v
2
j,thj(Vt−1)∑K

k=1 hk(Vt−1)
,

where the first inequality comes from the fact that both terms are nonnegative and the
second inequality comes from Jensen’s inequality. As a consequence, we have

K∑
i=1

hi(Vt−1)

(
vi,t −

∑K
j=1 vj,thj(V

(i,t))∑K
k=1 hk(V

(i,t))

)2

≤
K∑
i=1

hi(Vt−1)v
2
i,t + ρ2

K∑
j=1

hj(Vt−1)v
2
j,t

≤ (1 + ρ2)

K∑
i=1

hi(Vt−1)v
2
i,t.

We have so far proved

Cn −
n∑
t=1

K∑
i=1

pi,tvi,t ≤ −
K∑
i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
+

ρ2

2

n∑
t=1

At.

The announced result is then obtained by using Inequality (2).

To apply successfully Theorem 27 (page 2620), we need to have tight upper bounds on
ρ. The two following lemmas provide such bounds.
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Lemma 28 (A simple bound on the quantity ρ of Theorem 27) Let ψ be a convex
function satisfying (1) and assume that there exists B > 0 such that ∀i, j, t |vi,t − vj,t| ≤ B.
Then:

ρ = max
1≤t≤n

max
v,w∈[Vt−1,Vt], 1≤i≤K

ψ′(vi − C(v))

ψ′(wi − C(w))
≤ sup

x∈(−∞,ψ−1(1)]

exp

(
B
ψ′′

ψ′ (x)

)
.

Proof Let hi(x) = ψ′(xi − C(x)),mi(x) = ψ′′(xi − C(x)). For α ∈ [0, 1] we note

φ(α) = log {hi(Vt−1 + α(Vt − Vt−1))} .

Remark that we should rather note this function φi,t(α) but for sake of simplicity we omit
this dependency. With these notations we have ρ = maxα,β∈[0,1]; 1≤t≤n, 1≤i≤K exp(φ(α) −
φ(β)). By the mean value theorem for any α, β ∈ [0, 1] there exists ξ ∈ [0, 1] such that
φ(α) − φ(β) = (α − β)φ′(ξ). Now with the calculus done in the third step of the proof of
Theorem 27 and using the notations hi := hi(Vt−1 + ξ(Vt − Vt−1)), mi := mi(Vt−1 + ξ(Vt −
Vt−1)) we obtain

φ′(ξ) =
K∑
j=1

(Vj,t − Vj,t−1)

(
1Ii=j −

hj∑K
k=1 hk

)
mi

hi
=

K∑
j=1

(vi,t − vj,t)hj∑K
k=1 hk

mi

hi
.

Thus we get

|φ′(ξ)| ≤ max
1≤i,j≤K

|vi,t − vj,t| sup
v∈[Vt−1,Vt]

ψ′′

ψ′ (vi − C(v)) .

Moreover, using that x → ψ(x − C(x)) is continuous we know that there exists p̃i,t+1 ∈
[pi,t, pi,t+1] such that p̃i,t+1 = ψ(vi−C(v)) and thus vi−C(v) = ψ−1(p̃i,t+1). This concludes
the proof.

Lemma 29 (An other bound on the quantity ρ of Theorem 27) Let ψ be a func-
tion satisfying (1) and assume that there exists c > 0 such that 0 ≤ vi,t ≤ c

pi,t
1Ii=It. We

also assume that ψ′/ψ is a nondecreasing function and that there exists a > 1 such that

ψ
(
x+ c

ψ(x)

)
≤ aψ(x). Then:

ρ ≤ sup
x∈(−∞,ψ−1(1)]

exp

(
ac

ψ′′

ψ × ψ′ (x)

)
.

Proof We extract from the previous proof that ρ ≤ maxξ∈[0,1]; 1≤t≤n, 1≤i≤K exp(|φ′(ξ)|)
where

φ′(ξ) =
K∑
j=1

(vi,t − vj,t)hj∑K
k=1 hk

mi

hi
.

Note that, since the functions ψ and ψ′/ψ are nondecreasing, the function ψ is convex,
hence ψ′′ ≥ 0 and mi ≥ 0 . Now using our assumption on vi,t and since pi,t = fi(Vt−1), if
i ̸= It we have:

|φ′(ξ)| ≤
c

hIt
fIt (Vt−1)∑K
k=1 hk

mi

hi
≤ c

fIt(Vt−1 + ξ(Vt − Vt−1))

fIt(Vt−1)
× hIt
fIt(Vt−1 + ξ(Vt − Vt−1))

×mi

hi
× 1

hIt + hi
.
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Noticing that for any x, y in R∗
−,

ψ′
ψ
(x)×ψ′′

ψ′ (y)

ψ′(x)+ψ′(y) ≤ ψ′′(y)
ψ′(y)ψ(y) , we obtain

|φ′(ξ)| ≤ c
fIt(Vt−1 + ξ(Vt − Vt−1))

fIt(Vt−1)

mi

hi × fi(Vt−1 + ξ(Vt − Vt−1))
.

On the other hand if i = It then

|φ′(ξ)| ≤ c

fi(Vt−1)

mi

hi
.

To finish we only have to prove that fIt(Vt−1 + ξ(Vt − Vt−1)) ≤ afIt(Vt−1). Since ψ is
increasing it is enough to prove that fIt(Vt) ≤ afIt(Vt−1) which is equivalent to

ψ(VIt,t−1 + vIt,t − Ct) ≤ aψ(VIt,t−1 − Ct−1).

Since 0 ≤ vi,t ≤ c
pi,t

1Ii=It and C is an increasing function in each of its argument it is enough
to prove

ψ

(
VIt,t−1 − Ct−1 +

c

ψ(VIt,t−1 − Ct−1)

)
≤ aψ(VIt,t−1 − Ct−1)

which is true by hypothesis on ψ.

Appendix B. Lower Bounds

In this section we propose a simple unified proof to derive lower bounds on the pseudo-regret
in the four problems that we consider.

Theorem 30 Let m ≥ K. Let sup represents the supremum taken over all oblivious ad-
versaries and inf the infimum taken over all forecasters, then the following holds true in the
label efficient game:4

inf supRn ≥ 0.03n

√
log(K)

m
.

and in the label efficient bandit game we have:

inf supRn ≥ 0.04n

√
K

m
.

Proof First step: Definitions.

We consider a set of K oblivious adversaries. The ith adversary selects its gain vectors
as follows: For any t ∈ {1, . . . , n}, gi,t ∼ Ber

(
1+ε
2

)
and for j ̸= i, gj,t ∼ Ber

(
1−ε
2

)
. We note

Ei when we integrate with respect to the reward generation process of the ith adversary.
We focus on the label efficient versions of the full information and bandits games since by

4. Slightly better numerical constants can be obtained with a more careful optimization in step four of the
proof.
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taking m = n we recover the traditional games.

Until the fifth step we consider a deterministic forecaster, that is he does not have
access to an external randomization. Let qn = (q1,n, . . . , qK,n) be the empirical distribution
of plays over the arms defined by:

qi,n =

∑n
t=1 1IIt=i
n

.

Let Jn be drawn according to qn. We note Pi the law of Jn when the forecaster plays against
the ith adversary. Remark that we have Pi(Jn = j) = Ei 1n

∑n
t=1 1IIt=j , hence, against the

ith adversary we have:

Rn = Ei
n∑
t=1

(gi,t − gIt,t) = εn
∑
j ̸=i

Pi(Jn = j) = εn(1− Pi(Jn = i)),

which implies (since a maximum is larger than a mean)

supRn ≥ εn

(
1− 1

K

K∑
i=1

Pi(Jn = i)

)
. (26)

Second step: Information inequality.

Let P0 (respectively PK+1) be the law of Jn against the adversary drawing all its losses
from the Bernoulli of parameter 1−ε

2 (respectively 1−ε
2 + ε

K ), we call it the 0th adversary
(respectively the (K +1)th adversary). Now we use either Pinsker’s inequality which gives:

Pi(Jn = i) ≤ P0(Jn = i) +

√
1

2
KL(P0,Pi),

and thus (thanks to the concavity of the square root)

1

K

K∑
i=1

Pi(Jn = i) ≤ 1

K
+

√√√√ 1

2K

K∑
i=1

KL(P0,Pi); (27)

or Fano’s lemma:

1

K

K∑
i=1

Pi(Jn = i) ≤
log 2 + 1

K

∑K
i=1KL(Pi,PK+1)

log(K − 1)
. (28)

We will use (28) for the full information games when K > 3 and (27) the bandits games
and the full information games with K ∈ {2, 3}.

Third step: Computation of KL(P0,Pi) and KL(Pi,PK+1) with the Chain rule for
Kullback-Leibler divergence.
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Remark that since the forecaster is deterministic, the sequence of observed rewards (up to
time n) Wn (Wn ∈ {0, 1}mK for the full information label efficient game and Wn ∈ {0, 1}m
for the label efficient bandit game) uniquely determines the empirical distribution of plays
qn, and in particular the law of Jn conditionally to Wn is the same for any adversary. Thus,
if for i ∈ {0, . . . ,K +1} we note Pni the law of Wn when the forecaster plays against the ith

adversary, then one can easily prove that

KL(P0,Pi) ≤ KL(Pn0 ,Pni ), and KL(Pi,PK+1) ≤ KL(Pni ,PnK+1).

Now we use the Chain rule for Kullback-Leibler divergence iteratively to introduce the laws
Pti of the observed rewards Wt up to time t. We also note Zt = 1 if some rewards are
revealed at the end of round t and Zt = 0 otherwise. With these notations we have in the
full information games, for K > 3,

KL(Pni ,PnK+1)

= KL(P1
i ,P1

K+1) +
n∑
t=2

∑
wt−1

Pt−1
i (wt−1)KL(Pti(.|wt−1),PtK+1(.|wt−1))

= KL(P1
i ,P1

K+1)

+

n∑
t=2

 ∑
wt−1:Zt=1

Pt−1
i (wt−1)

[
KL

(
1 + ε

2
,
1− ε

2
+

ε

K

)
+ (K − 1)KL

(
1− ε

2
,
1− ε

2
+

ε

K

)]
=

[
KL

(
1 + ε

2
,
1− ε

2
+

ε

K

)
+ (K − 1)KL

(
1− ε

2
,
1− ε

2
+

ε

K

)]
Ei

n∑
t=1

Zt

≤ m

[
KL

(
1 + ε

2
,
1− ε

2
+

ε

K

)
+ (K − 1)KL

(
1− ε

2
,
1− ε

2
+

ε

K

)]
.

Summing and plugging this into (28) we obtain for the full information games:

1

K

K∑
i=1

Pi(Jn = i) ≤
log 2 +mKL

(
1+ε
2 , 1−ε2 + ε

K

)
+m(K − 1)KL

(
1−ε
2 , 1−ε2 + ε

K

)
log(K − 1)

. (29)

In the bandits games we have:

KL(Pn0 ,Pni )

= KL(P1
0,P1

i ) +

n∑
t=2

∑
wt−1

Pt−1
0 (wt−1)KL(Pt0(.|wt−1),Pti(.|wt−1))

= KL(P1
0,P1

i ) +
n∑
t=2

∑
wt−1:Zt=1,It=i

Pt−1
0 (wt−1)KL

(
1− ε

2
,
1 + ε

2

)

= KL

(
1− ε

2
,
1 + ε

2

)
E0

n∑
t=1

1IZt=1,It=i.

Summing and plugging this into (27) we obtain for the bandits games:

1

K

K∑
i=1

Pi(Jn = i) ≤ 1

K
+

√
m

2K
KL

(
1− ε

2
,
1 + ε

2

)
. (30)
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Note that with the same reasoning we obtain for the full information games:

1

K

K∑
i=1

Pi(Jn = i) ≤ 1

K
+

√
m

2
KL

(
1− ε

2
,
1 + ε

2

)
. (31)

Fourth step: Conclusion for deterministic forecasters.
To conclude the proof for deterministic forecaster one needs to plug in (29) (for the full
information games with K > 3) or (31) (for the full information games with K ∈ {2, 3})
or (30) (for the bandits games) in (26) along with straightforward computations and the
following simple formula:

KL(p, q) ≤ (p− q)2

q(1− q)
.

Fifth step: Fubini’s Theorem to handle non-deterministic forecasters.

Now let us consider a randomized forecaster. Denote by Ereward,i the expectation with
respect to the reward generation process of the ith adversary, Erand the expectation with
respect to the randomization of the forecaster and Ei the expectation with respect to both
processes. Then one has (thanks to Fubini’s Theorem),

1

K

K∑
i=1

Ei
n∑
t=1

(gi,t − gIt,t) = Erand
1

K

K∑
i=1

Ereward,i
n∑
t=1

(gi,t − gIt,t).

Now remark that if we fix the realization of the forecaster’s randomization then the results of
the previous steps apply and in particular we can lower bound 1

K

∑K
i=1 Ereward,i

∑n
t=1(gi,t−

gIt,t) as before.

Appendix C. Proofs

This section gathers the proofs that have not been provided so far.

C.1 Proof of Theorem 2 (page 2605)

The proof relies on combining Theorem 27 (page 2620) with Lemma 28 (page 2624) for
γ = 0, and with Lemma 29 (page 2624) for γ > 0.

We make use of Theorem 27 and start with straightforward computations to bound
the first sum in (25). We have ψ−1(x) = −η(x − γ/K)−1/q which admits as a primitive∫
ψ−1(u)du = −η

1−1/q (u− γ/K)1−1/q. Thus one immediately gets∫ 1/K

pi,n+1

(−ψ−1)(u)du ≤ η

1− 1/q

1

K1−1/q
− η(pi,n+1 − γ/K)1−1/q

and
pi,n+1(−ψ−1)(pi,n+1) = − γ

K
ψ−1(pi,n+1) + η(pi,n+1 − γ/K)1−1/q.
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Summing over i proves that

−
K∑
i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
≤ q

q − 1
ηK1/q − γ

K

K∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to bound ρ and At. First we deal with
the case γ = 0. Lemma 28 (page 2624) implies ρ ≤ exp(B(q+1)/η) since we have ψ′′

ψ′ (x) =
q+1
−x = q+1

η ψ(x)1/q. The proof of (6) is concluded by ψ′ = q
ηψ

(q+1)/q, and

At ≤ B2
t

K∑
i=1

ψ′ ◦ ψ−1(pi,t) = B2
t

K∑
i=1

q

η
p
(q+1)/q
i,t ≤ q

η
B2
t .

For (7), the term At is controlled differently:

At ≤ (1 + ρ2)

K∑
i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t =

q

η
(1 + ρ2)

K∑
i=1

p
(q+1)/q
i,t v2i,t ≤

qB

η
(1 + ρ2)

K∑
i=1

pi,tvi,t.

Now we have already seen that ρ ≤ exp(B(q + 1)/η), hence ρ2(1 + ρ2) ≤ 2 exp(8Bq/η),
which leads to (7).

The case γ > 0 is more intricate. This is why we restrict ourselves to a specific form for
the estimates vi,t, see the assumption in Theorem 2. We start by using Lemma 29 (page

2624) to prove that ρ ≤ µ. First we have ψ′′

ψ′ = q+1
η (ψ − γ/K)1/q ≤ q+1

η ψ1/q. Besides, for

any a ≥ b ≥ d we have a
b ≤ a−d

b−d and thus for any x < 0, we have

ψ
(
x+ c

ψ(x)

)
ψ(x)

≤
ψ
(
x+ c

ψ(x)

)
− γ

K

ψ(x)− γ
K

=

(
1− c

−xψ(x)

)−q
≤

(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q

.

Thus Lemma 29 gives us

ρ2 ≤ exp

{
2(q + 1)c

η

(
K

γ

)(q−1)/q
(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

= µ.

Next we use ψ′ = q
η (ψ − γ/K)(q+1)/q and the form of vi,t to get

At ≤ (1 + ρ2)
K∑
i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t ≤

q(1 + µ)

η

K∑
i=1

p
(q+1)/q
i,t v2i,t =

q(1 + µ)

η
p
(1−q)/q
It,t

c2t .
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Let ζ ′ = qcµ(1+µ)
2η . From Theorem 27, we get

Cn −
n∑
t=1

K∑
i=1

pi,tvi,t ≤
q

q − 1
ηK1/q + γCn +

ρ2

2

n∑
t=1

At −
γ

K

n∑
t=1

K∑
i=1

vi,t

≤ q

q − 1
ηK1/q + γCn +

n∑
t=1

ct

(
ζ ′p

(1−q)/q
It,t

− γ

KpIt,t

)

≤ q

q − 1
ηK1/q + γCn +max

u>0

(
ζ ′u(1−q)/q − γ

Ku

) n∑
t=1

ct

=
q

q − 1
ηK1/q + γCn +

γ

(q − 1)K

(
(q − 1)ζ ′K

qγ

)q n∑
t=1

ct

=
q

q − 1
ηK1/q + γCn + γζ

n∑
t=1

K∑
i=1

pi,tvi,t.

The proof of (8) is concluded by using Inequality (2).

C.2 Proof of Theorem 3 (page 2606)

We have

n∑
t=1

K∑
i=1

pi,tvi,t =
n∑
t=1

Ek∼ptvk,t

=
1− γ

η

n∑
t=1

(
logEi∼qt exp(ηvi,t)− log

[
exp

(
− η

1− γ
Ek∼ptvk,t

)
Ei∼qt exp(ηvi,t)

])

=
1− γ

η

(
S −

n∑
t=1

log(Dt)

)
,

where

S =
n∑
t=1

logEi∼qt exp(ηvi,t)

=
n∑
t=1

log

( ∑K
i=1 exp(ηVi,t)∑K
i=1 exp(ηVi,t−1)

)
= log

(∑K
i=1 exp(ηVi,n)

K

)
≥ η max

1≤i≤K
Vi,n − logK

and

Dt = exp

(
− η

1− γ
Ek∼ptvk,t

)
Ei∼qt exp(ηvi,t)

When γ = 0, since 0 ≤ vi,t ≤ Bt, by applying Hoeffding’s inequality, we get log(Dt) ≤
η2B2

t
8 , hence Inequality (9). For γ = 0, we can also use Lemma 35 and obtain log(Dt) ≤

2630



Regret Bounds Under Partial Monitoring

η2BΘ(ηB)Ei∼ptvi,t, hence Inequality (10). For γ satisfying (11), we have

Dt ≤ exp

(
− η

1− γ
Ek∼ptvk,t

)
Ei∼qt

(
1 + ηvi,t +Θ(ηB)η2v2i,t

)
(32)

= exp

(
− η

1− γ
Ek∼ptvk,t

)(
1 +

η

1− γ
Ei∼ptvi,t − η

γ
∑K

i=1 vi,t
K(1− γ)

+ Θ(ηB)η2Ei∼qtv2i,t
)

≤ exp

(
− η

1− γ
Ek∼ptvk,t

)(
1 +

η

1− γ
Ei∼ptvi,t

)
(33)

≤ 1.

To get (32), we used that Θ is an increasing function and that ηvi,t ≤ ηB. To get (33), we
noticed that it is trivial when maxi,t pi,tvi,t = 0, and that otherwise, we have

γ
∑K

i=1 vi,t
K(1− γ)

≥
γ
∑K

i=1 pi,tv
2
i,t

K(1− γ)maxi,t pi,tvi,t
≥ γ

Kmaxi,t pi,tvi,t
Ei∼qtv2i,t ≥ ηΘ(ηB)Ei∼qtv2i,t,

where the last inequality uses (11). We have thus proved

n∑
t=1

K∑
i=1

pi,tvi,t ≥
1− γ

η
logEi∼p1 exp(ηVi,n) ≥ (1− γ)

(
max
1≤i≤K

Vi,n −
logK

η

)
,

hence the announced result.

C.3 Recovering Theorem 3 from Theorem 27

We start with straightforward computations to bound the first sum in (25). We have
ψ−1(x) = 1

η log(x−γ/K) which admits as a primitive
∫
ψ−1(u)du = 1

η [(u− γ/K) log(u− γ/K)− u].
Thus one immediately gets

−
∫ 1/K

pi,n+1

ψ−1(u)du− pi,n+1ψ
−1(pi,n+1)

=
1

η

(
1

K
− 1− γ

K
log

(
1− γ

K

)
− pi,n+1 −

γ

K
log
(
pi,n+1 −

γ

K

))
.

Summing over i proves that

−
K∑
i=1

(
pi,n+1ψ

−1(pi,n+1) +

∫ 1/K

pi,n+1

ψ−1(u)du

)
=

1− γ

η
log

(
K

1− γ

)
− γ

K

K∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to bound ρ and At. For the former, we
use Lemma 28 (page 2624) which directly shows ρ ≤ exp(ηB). For the latter we distinguish
two cases. If γ = 0 we use

At ≤ B2
t

K∑
i=1

ψ′ ◦ ψ−1(pi,t) = ηB2
t ,
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which concludes the proof of the weakened version of (9) with η
8 replaced by η

2 exp(2ηB).
On the other hand if γ > 0 we use

At ≤ (1 + ρ2)

K∑
i=1

ψ′ ◦ ψ−1(pi,t)v
2
i,t ≤ (1 + ρ2)η

K∑
i=1

pi,tv
2
i,t.

From Theorem 27, when the weakened version of (11) holds, that is when

γ ≥ K
η exp(2Bη) [1 + exp(2Bη)]

2
max
i,t

pi,tvi,t,

we have

Cn −
n∑
t=1

K∑
i=1

pi,tvi,t

≤ 1− γ

η
log

(
K

1− γ

)
− γ

K

K∑
i=1

(
n∑
t=1

vi,t − Cn

)
+
η exp(2Bη) [1 + exp(2Bη)]

2

n∑
t=1

K∑
i=1

pi,tv
2
i,t

≤ 1− γ

η
log

(
K

1− γ

)
+ γCn,

hence

(1− γ)

(
Cn +

log(1− γ)

η

)
−

n∑
t=1

K∑
i=1

pi,tvi,t ≤ (1− γ)
logK

η
.

This gives the desired result since we have

Cn +
log(1− γ)

η
=

1

η
log

( K∑
j=1

exp(ηVi,n)

)
≥ max

1≤i≤K
Vi,n.

C.4 Proof of Theorem 8 (page 2610)

We will use the following version of Bernstein’s inequality for martingales.

Theorem 31 Let F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn random variables such
that |Xt| ≤ b for some b > 0, Xt is Ft-measurable, E(Xt|Ft−1) = 0 and E(X2

t |Ft−1) ≤ v for
some v > 0. Then, for any t > 0, we have

P
( n∑
t=1

Xt ≥ t
)
≤ exp

(
− t2

2nv + 2bt/3

)
, (34)

and for any δ > 0, with probability at least 1− δ, we have

n∑
t=1

Xt ≤
√

2nv log(δ−1) +
b log(δ−1)

3
.
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Proof of Theorem 31 Both inequalities come from Result (1.6) of Freedman (1975). The

first inequality then uses (1+x) log(1+x)−x ≥ x2

2+2x/3 , while the other uses Inequality (45)

of Audibert et al. (2009). This last inequality allows to remove the
√
2 factor appearing in

Lemma A.8 of Cesa-Bianchi and Lugosi (2006).

We start the proof of Theorem 8 by noting that, since Rn ≤ n, the result is trivial for
δ ≤ 2K exp(−m/27) so that we assume hereafter that δ ≥ 2K exp(−m/27), or equivalently
log(2Kδ−1)

m ≤ 1
27 . We consider the event E on which we simultaneously have

n∑
t=1

Zt ≤ m, (35)

−
n∑
t=1

gIt,t ≤ −
n∑
t=1

K∑
k=1

pk,tgk,t +

√
n log(4δ−1)

2
, (36)

and

max
1≤i≤K

n∑
t=1

(
gi,t −

η

8ε
−

K∑
k=1

pk,tgk,t

)(
1− Zt

ε

)
≤ 2

√
n log(2Kδ−1)

ε
+

log(2Kδ−1)

2ε
. (37)

Let us first prove that this event holds with probability at least 1− δ. From (34), we have

P
( n∑
t=1

Zt > m

)
≤ exp

(
− m2/16

3m/2 +m/6

)
≤ exp

(
−m

27

)
≤ δ

4

So (35) holds with probability at least 1− δ/4. From the concentration of martingales with
bounded differences (Hoeffding, 1963; Azuma, 1967), (36) holds with probability at least
1 − δ/4. For η/(8ε) ≤

√
2 − 1 (which is true for our particular η), we can apply Theorem

31 with b =
√
2/ε and v = 2/ε to the random variables

(
gi,t − η

8ε −
∑K

k=1 pk,tgk,t
)(
1− Zt

ε

)
.

We get that for a fixed i ∈ {1, . . . ,K}, with probability at least 1− δ/(2K), we have

n∑
t=1

(
gi,t −

η

8ε
−

K∑
k=1

pk,tgk,t

)(
1− Zt

ε

)
≤ 2

√
n log(2Kδ−1)

ε
+

log(2Kδ−1)

2ε
.

From a union bound, we get that (37) holds with probability at least 1− δ/2. Using again
a union bound, we thus have proved that the event E holds with probability at least 1− δ.

Now, on the event E , by combining (36) and (37), we obtain

Rn = max
1≤i≤K

n∑
t=1

gi,t −
n∑
t=1

gIt,t ≤
√
n log(4δ−1)

2
+ max

1≤i≤K

n∑
t=1

gi,t −
n∑
t=1

K∑
k=1

pk,tgk,t

≤
√
n log(4δ−1)

2
+ max

1≤i≤K

n∑
t=1

gi,t
Zt
ε

−
n∑
t=1

K∑
k=1

pk,tgk,t
Zt
ε

+

n∑
t=1

η

8ε

(
1− Zt

ε

)
+ 2

√
n log(2Kδ−1)

ε
+

log(2Kδ−1)

2ε
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Since we have
∑n

t=1 Zt ≤ m, the rewards received by the forecaster are equal to the rewards
which would receive the forecaster that uses Zt to decide whether he asks for the gains or
not, whatever

∑t−1
s=1 Zs is. This enables us to use (9) (which holds with probability one).

We obtain

Rn ≤
√
n log(4δ−1)

2
+

logK

η
+
nη

8ε
+ 2

√
n log(2Kδ−1)

ε
+

log(2Kδ−1)

2ε

≤
√
n log(4δ−1)

2
+

logK

η
+
n2η

6m
+ 4n

√
log(2Kδ−1)

3m
+

2n log(2Kδ−1)

3m
.

From the inequalities m ≤ n, K ≥ 2 and log(2Kδ−1)
m ≤ 1

27 , this implies

Rn ≤ 10n

3

√
log(2Kδ−1)

m
+

logK

η
+
ηn2

6m
.

The first inequality of the theorem is then obtained by plugging η =
√
m logK
n . The sec-

ond inequality is derived by integrating the deviations using the standard formula EW ≤∫ 1
0

1
δP(W > log(δ−1))dδ.

C.5 Proof of Theorem 9 (page 2610)

The proof goes exactly like for Theorem 8. We just use (6) instead of (9).

C.6 Proof of Theorem 12 (page 2612)

The bound is trivial for 9K log(3K) ≥ n. So we consider hereafter that γ = 2

√
K log(3K)

n < 2
3 .

The result is then a direct consequence of Theorem 21 with G0 = n. The inequality on ERn
comes by integrating the deviations.

C.7 Proof of Theorem 13 (page 2613)

First note that (16) holds for 9
√
nK ≥ n since we trivially have Rn ≤ n. For 9

√
nK < n, we

apply (18) with G0 = n > 81K, and obtain Rn ≤ 8.5
√
nK +

√
2nK log(δ−1). This implies

(16) and also (17) by using Proposition 33.
For the last assertions, we proceed similarly. They trivially hold for 9

√
nK log(3K) ≥ n.

For n > 9
√
nK log(3K), we apply Theorem 20 with G0 = n, and obtain

Rn ≤ 9

2

√
nK log(3K) + 4

√
nK

log(3K)
+

√
2nK

log(3K)
log(Kδ−1).

By using 1√
log(3K)

≤ 1
log(6)

√
log(3K), this independently implies

Rn ≤ 9
√
nK log(3K) +

√
2nK

log(3K)
log(δ−1),

and by integration,
ERn ≤ 9

√
nK log(3K),

hence the desired inequalities.
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C.8 Proof of Theorem 17 (page 2615)

The proof follows the scheme described in Section 5.1.2. In particular let

ν =
γε

βK
+

1

log
(
1− βK

γε

) .
Then we have

−
K∑
i=1

pi,tvi,t = Zt
pIt,t
β

log

(
1−

βgIt,t
εpIt,t

)
≥ Zt

(
−
gIt,t
ε

+
νgIt,t
ε

log

(
1−

βgIt,t
εpIt,t

))
≥ −gIt,t

Zt
ε

− νβ

ε

K∑
i=1

vi,t.

Moreover with a simple application of Theorem 31 we have that with probability at least
1− δ,

−
n∑
t=1

gIt,t ≤ −
n∑
t=1

gIt,t
Zt
ε

+

√
2n log δ−1

ε
+

log δ−1

3ε
.

Now note that the sequenceWt = exp
(
βGi,t−βVi,t

)
, t = 1, . . . , n, is a supermartingale over

the filtration generated by (gt, It, Zt), t = 1, . . . , n. Indeed, we have for any t ∈ {1, . . . , n},

EIt∼pt,Zt exp(−βvi,t) = 1− ε+ ε

(
1− βgi,t

ε

)
= 1− βgi,t ≤ exp(−βgi,t).

Thus, with probability at least 1− δ, we have against deterministic adversaries

max
1≤i≤K

Vi,n ≥ Gmax −
log δ−1

β
,

and against general adversaries

max
1≤i≤K

Vi,n ≥ Gmax −
log(Kδ−1)

β
.

Now we apply (8) of Theorem 2. Let c = − γ
βK log

(
1 − βK

γε

)
. If c < qη

( γ
(q−1)K

)(q−1)/q

then we have

(1− γ)

(
max
1≤i≤K

Vi,n

)
− (1 + γζ)

n∑
t=1

K∑
i=1

pi,tvi,t ≤
q

q − 1
ηK

1
q ,

where

ζ =
1

(q − 1)K

((q − 1)cKµ(1 + µ)

2γη

)q
,
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with

µ = exp

{
2(q + 1)c

η

(
K

γ

)(q−1)/q
(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.

Thus, in the case of a deterministic adversaries, we obtain

Gmax −
n∑
t=1

gIt,t

≤
(
γ(1 + ζ) +

νβK

ε

)
n+

q

q − 1
ηK

1
q +

log(2δ−1)

β
+ n

√
2 log(2δ−1)

m
+ n

log(2δ−1)

3m

=
n

m

((
γ(1 + ζ) + νβ′K

)
m+

q

q − 1
η′K

1
q +

log(2δ−1)

β′

)
+ n

√
2 log(2δ−1)

m
+ n

log(2δ−1)

3m
,

(38)

where β′ = β/ε and η′ = ηε. One can see that the term into parenthesis in (38) is exactly
the same than the right hand side of (43), up to the relabelling of β and η into β′ and η′.
This allows us to use the same numerical application as in Section C.9 (up to the additional
terms outside of the parenthesis in (43)). One can apply the same technique in the case of
a general adversary.

C.9 Proof of Theorem 18 (page 2616), Corollary 19 and Theorem 20 (page
2616)

Consider parameters q > 1, 0 < γ < 1, η > 0 and β > 0 such that βK < γ and such that the

real number c = − γ
βK log

(
1− βK

γ

)
satisfies c < qη

( γ
(q−1)K

)(q−1)/q
. From (8) of Theorem 2,

since we have vi,t =
ct
pi,t

1IIt=i with ct = −pi,t
β log

(
1− βgi,t

pi,t

)
≤ − γ

βK log
(
1− βK

γ

)
= c, we have

(1− γ)

(
max
1≤i≤K

Vi,n

)
+

1 + γζ

β

n∑
t=1

pIt,t log

(
1−

βgIt,t
pIt,t

)
≤ q

q − 1
ηK

1
q , (39)

where

ζ =
1

(q − 1)K

((q − 1)cKµ(1 + µ)

2γη

)q
,

with

µ = exp

{
2(q + 1)c

η

(
K

γ

)(q−1)/q
(
1− c

qη

(
(q − 1)K

γ

)(q−1)/q
)−q}

.

Let

ν =
γ

βK
+

1

log(1− βK/γ)
.

The function x 7→ 1
x + 1

log(1−x) is increasing on (0,+∞). So we have

1

log(1− βgIt,t/pIt,t)
+

pIt,t
βgIt,t

≤ ν,
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hence

pIt,t
β

log

(
1−

βgIt,t
pIt,t

)
≥ −gIt,t + νgIt,t log

(
1−

βgIt,t
pIt,t

)
≥ −gIt,t − νβ

K∑
i=1

vi,t. (40)

Inequality (39) thus implies

(1− γ)

(
max
1≤i≤K

Vi,n

)
− (1 + γζ)

n∑
t=1

gIt,t − (1 + γζ)νβ

K∑
i=1

Vi,n ≤ q

q − 1
ηK

1
q ,

which leads to(
1− γ − (1 + γζ)νβK

)(
max
1≤i≤K

Vi,n

)
− (1 + γζ)

n∑
t=1

gIt,t ≤
q

q − 1
ηK

1
q , (41)

We now provide a high probability lower bound of the left-hand side. The technical tool
(essentially deviation inequalities for supermartingales) comes from Section 6.8 of Cesa-
Bianchi and Lugosi (2006).
High probability lower bound on max1≤i≤K Vi,n.

For any t ∈ {1, . . . , n}, we have

EIt∼pt exp(−βvi,t) = EIt∼pt exp
{
log

(
1− βgi,t

pi,t

)
1IIt=i

}
= 1− βgi,t ≤ exp(−βgi,t).

This implies that the sequence Wt = exp
(
βGi,t− βVi,t

)
, t = 1, . . . , n, forms a supermartin-

gale over the filtration generated by (gt, It), t = 1, . . . , n. Indeed, we have

E
(
exp(Wt)|(gs, Is), s = 1, . . . , t− 1

)
= Egt|(gs,Is),s=1,...,t−1EIt∼pt exp(Wt) ≤ exp(Wt−1).

So, we have E exp(Wn) ≤ E exp(W1) ≤ 1, which implies that with probability at least 1− δ,
Vi,n ≥ Gi,n − log(δ−1)

β with probability at least 1 − δ. So, for any fixed k ∈ {1, . . . ,K}, we
have

max
1≤i≤K

Vi,n ≥ Gk,n −
log(δ−1)

β
. (42)

Combining (41) and (42), we obtain that for any δ > 0 and any fixed k ∈ {1, . . . ,K},
with probability at least 1− δ, we have

(
1− γ − (1 + γζ)νβK

)
Gk,n − (1 + γζ)

n∑
t=1

gIt,t ≤
q

q − 1
ηK

1
q +

log(δ−1)

β
,

hence

Gk,n −
n∑
t=1

gIt,t ≤
(
γ(1 + ζ) + νβK

)
Gk,n +

q

q − 1
ηK

1
q +

log(δ−1)

β
. (43)

Now, for G0 ≥ 81K, let us take

q = 2, γ = 3

√
K

G0
, β =

1√
2KG0

, and η = 2
√
G0.
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Then we have c ≈ 1.14, ν ≈ 0.522, µ ≤ 2.09, ζ ≤ 0.377, and

Gk,n −
n∑
t=1

gIt,t ≤ 4.5

√
K
G2

max

G0
+ 4
√
KG0 +

√
2KG0 log(δ

−1). (44)

For deterministic adversaries, the arm achieving a cumulative reward equal to Gmax is
deterministic (it does not depend on the randomization of the forecaster). So, we may take
k equal to this fixed arm, and obtain (18).

To prove the inequality for a fully oblivious adversary, let us take k ∈ argmaxi∈{1,...,K} EGi,n.
From (44) which holds with probability at least 1−δ, it suffices to prove that with probabil-
ity at least 1− δ, we have Gk,n ≥ Gmax −

√
8 log(Kδ−1)Gmax. Let λ > 0. Since the reward

vectors g1, . . . , gn are independent, and from the inequality exp(λx) ≤ 1+ [exp(λ)− 1]x for
any x ∈ [0, 1] (by convexity of the exponential function), for any j ̸= k, from Lemma 35,
we have

E exp(λGj,n) =

n∏
t=1

E exp(λgj,t) ≤
n∏
t=1

exp
[(

exp(λ)− 1
)
Egj,t

]
= exp

[(
exp(λ)− 1

)
EGj,n

]
,

and

E exp(−λGk,n) =
n∏
t=1

E exp(−λgk,t)

≤
n∏
t=1

E
(
1− λgk,t +

1

2
λ2g2k,t

)

≤
n∏
t=1

(
1− λ

(
1− λ

2

)
Egk,t

)

≤
n∏
t=1

exp

[
− λ

(
1− λ

2

)
Egk,t

]
= exp

[
− λ

(
1− λ

2

)
EGk,n

]
.

This implies respectively that for any j ̸= k, with probability at least 1− δ,

Gj,n ≤ EGj,n + λΘ(λ)EGj,n +
log(δ−1)

λ
,

and with probability at least 1− δ,

EGk,n ≤ Gk,n +
λ

2
EGk,n +

log(δ−1)

λ
.

By optimizing the free parameter λ (using Lemma 32 below), and from a union bound, with
probability at least 1− δ, we simultaneously have

Gj,n ≤ EGj,n +
√

2EGj,n log(Kδ−1) +
log(Kδ−1)

3
,

and

EGk,n ≤ Gk,n +
√

2EGk,n log(Kδ−1).
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Since we have EGk,n ≥ EGj,n, we get consecutively Gk,n ≥ EGj,n −
√

2EGj,n log(Kδ−1),
and after computations, Gk,n ≥ Gj,n −

√
8Gj,n log(Kδ−1) for any j ̸= k. With probability

at least 1− δ, we thus have Gk,n ≥ Gmax −
√

8 log(Kδ−1)Gmax, which concludes the proof
of (19).

To prove Corollary 19, first note that (20) holds for 9
√
KGmax ≥ Gmax since we trivially

have Rn ≤ Gmax. For 9
√
KGmax < Gmax, we may apply Theorem 18 with G0 = Gmax since

Gmax > 81K, and obtain Rn ≤ 8.5
√
KGmax +

√
2KGmax log(δ

−1). This implies (20) and
(21).

Lemma 32 Let Θ(λ) = exp(λ)−1−λ
λ2

. For any A > 0, infλ>0

{
λΘ(λ) + A2

2λ

}
≤ A+A2/6.

Proof Considering λ = log(1 + A), we have infλ>0

{
λΘ(λ) + A2

2λ

}
≤ log(1 + A)Θ[log(1 +

A)]+ A2

2 log(1+A) = A+ A2

6 − 1+A+A2

6
log(1+A)Φ(A) where Φ(A) , log(1+A)− A+A2

2

1+A+A2

6

. Since Φ(0) = 0

and Φ′(A) = A4

36(1+A)(1+A+A2/6)2
≥ 0, we get Φ(A) ≥ 0, hence the result.

To prove Theorem 20, we replace (42), which holds with probability at least 1− δ, by

max
1≤i≤K

Vi,n ≥ Gmax −
log(δ−1)

β
,

which, by a union bound, holds with probability at least 1 −Kδ. (It is this union bound
that makes the logK factor appears in the bound.) This leads to the following modified
version of (43): with probability 1−Kδ,

Gmax −
n∑
t=1

gIt,t ≤
(
γ(1 + ζ) + νβK

)
Gmax +

q

q − 1
ηK

1
q +

log(δ−1)

β
.

Now, for G0 ≥ 81K log(3K), let us take q = 2,

γ = 3

√
K log(3K)

G0
, β =

√
log(3K)

2KG0
, and η = 2

√
G0

log(3K)
.

Then we have c ≈ 1.14, ν ≈ 0.522, µ ≤ 2.09, ζ ≤ 0.377, and

Gmax −
n∑
t=1

gIt,t ≤ 4.5

√
G2

max

G0
K log(3K) + 4

√
KG0

log(3K)
+

√
2KG0

log(3K)
log(δ−1).

This inequality holds with probability at least 1−Kδ. This implies the result of Theorem 20.

C.10 Proof of Theorem 21 (page 2617)

Consider parameters q > 1, 0 < γ < 1, η > 0 and β > 0 such that βK < γ. Introduce
c = − γ

βK log
(
1− βK

γ

)
. We have maxi,t pi,tvi,t ≤ c. So (11) holds as soon as

γ ≥ KηcΘ

(
− η

β
log
(
1− βK

γ

))
. (45)
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From (12) and as in the proof of Theorem 13, by using (40) with ν = γ
βK + 1

log(1−βK/γ) , we
obtain

(1− γ)

(
max
1≤i≤K

Vi,n

)
−

n∑
t=1

gIt,t − νβ

K∑
i=1

Vi,n ≤ (1− γ)
logK

η
,

hence

(1− γ − νβK)

(
max
1≤i≤K

Vi,t

)
−

n∑
t=1

gIt,t ≤ (1− γ)
logK

η
.

From the same argument as in the proof of Theorem 18, for any i ∈ {1, . . . ,K}, we have

E exp
(
βGi,n − βVi,n

)
≤ 1, and for any δ > 0, Vi,n ≥ Gi,n − log(δ−1)

β holds with probability
at least 1− δ. By a union bound, we get that with probability at least 1−Kδ,

max
1≤i≤K

Vi,n ≥ Gmax −
log(δ−1)

β
.

With probability at least 1− δ, we thus have

Gmax −
n∑
t=1

gIt,t ≤ (γ + νβK)Gmax +
log(Kδ−1)

β
+

logK

η
.

This inequality holds for any parameters q > 1, 0 < γ < 1, η > 0 and β > 0 such that the
inequality βK < γ and (45) hold. We choose

γ = 2

√
K log(3K)

G0
, β =

√
log(3K)

2KG0
, and η = 2

√
log(3K)

KG0
,

which gives c ≈ 1.23, ν ≈ 0.536, and

Gmax −
n∑
t=1

gIt,t ≤
5

2

√
G2

max

G0
K log(3K) +

√
2KG0

log(3K)
log(Kδ−1) +

1

2

√
KG0 log(3K).

C.11 Proof of Theorem 22 (page 2617)

Consider parameters 0 < γ < 1, η > 0 and β > 0. We have maxi,t pi,tvi,t ≤ 1 + βK
γ and

maxi,t vi,t ≤ (1 + β)Kγ . So (11) holds as soon as

γ ≥ Kη
(
1 +

βK

γ

)
Θ

(
η(1 + β)K

γ

)
. (46)

Then, from (12), we have

(1− γ)

(
max
1≤i≤K

Vi,n

)
−

n∑
t=1

gIt,t − βnK ≤ (1− γ)
logK

η
.

Let ξt = max1≤i≤K Vi,t − min1≤j≤K Vj,t and ξ = max1≤t≤n ξt. Consider a fixed switching
strategy (i1, . . . , in) ∈ {1, . . . ,K}n, and let V(i1,...,in) =

∑n
t=1 vit,t. One can easily check that

max
1≤i≤K

Vi,n ≥ V(i1,...,in) − ξS(i1, . . . , in), and consequently

max
1≤i≤K

Vi,n ≥ max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in) − ξS.
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Since exp(−x) ≤ 1−x+x2/2 for x ≤ 0, we have for any t ∈ {1, . . . , n} and any i ∈ {1, . . . ,K}

EIt∼pt exp
(
− 2βgi,t

1IIt=i
pi,t

)
≤ EIt∼pt

(
1− 2βgi,t

1IIt=i
pi,t

+ 2β2g2i,t
1IIt=i
p2i,t

)
= 1− 2βgi,t + 2β2

g2i,t
pi,t

≤ 1− 2β
(
gi,t −

β

pi,t

)
≤ exp

(
− 2β

(
gi,t −

β

pi,t

))
,

hence

EIt∼pt exp
(
2β(gi,t − vi,t)

)
≤ 1.

For a fixed (i1, . . . , in), by using this inequality n times corresponding to the n time steps
and their associated actions, this implies E exp

(
2β(G(i1,...,in) − V(i1,...,in))

)
≤ 1, hence with

probability at least 1− δ,

G(i1,...,in) − V(i1,...,in) ≤
log(δ−1)

2β
.

Let M =
∑S

j=0

(
n−1
j

)
K(K − 1)j be the number of switching strategies of size not larger

than S. By a union bound, we get that with probability at least 1− δ,

max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in) ≥ max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in) −
log(Mδ−1)

2β
.

By putting the previous inequalities together, we obtain that with probability at least 1−δ,

(1− γ) max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in) −
n∑
t=1

gIt,t ≤ βnK + (1− γ)
logK

η
+ ξS +

log(Mδ−1)

2β
,

hence

RSn = max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in) −
n∑
t=1

gIt,t ≤ (γ + βK)n+
logK

η
+ ξS +

log(Mδ−1)

2β
.

We now upper bound M and ξ. We have

M =

S∑
j=0

(
n− 1

j

)
K(K − 1)j ≤ KS+1

S∑
j=0

(
n− 1

j

)
≤ KS+1

(
en

S

)S
=

exp(s)

2
,

where the second inequality comes from Sauer’s lemma. Let

ρ̃ = exp
(
(1 + β)

Kη

γ

)1 +Kβ

1− γ
.
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By contradiction, we now prove

ξ ≤ ρ̃− 1

η
log

(
β

ρ̃
− γ

K

)
. (47)

To this end, we start by bounding Ct−Ct−1. By the mean value theorem, with the notations
of the third step of the proof of Theorem 27, there exists W ∈ [Vt−1, Vt] such that

Ct − Ct−1 = C(Vt)− C(Vt−1)

=
K∑
i=1

∂C

∂xi
(W )(Vi,t − Vi,t−1)

=

K∑
i=1

hi(W )∑K
j=1 hj(W )

gi,t1IIt=i + β

fi(Vi,t−1)

=
1∑K

j=1 η(fj(W )− γ/K)

K∑
i=1

ηhi(W )
gi,t1IIt=i + β

hi(Vi,t−1) + ηγ/K

≤ 1

1− γ

K∑
i=1

hi(W )
1IIt=i + β

hi(Vt−1)
≤ ρ

1− γ

K∑
i=1

(1IIt=i + β) = ρ
1 +Kβ

1− γ
.

From Lemma 28 (page 2624), we have ρ ≤ exp
(
(1 + β)Kηγ

)
, hence Ct − Ct−1 ≤ exp

(
(1 +

β)Kηγ

)
1+Kβ
1−γ = ρ̃. If (47) does not hold, then from Lemma 1, we have

max
1≤t≤n

(
Ct − min

1≤j≤K
Vj,t

)
> ρ̃− ψ−1(β/ρ̃).

Besides we have C0 − min1≤j≤K Vj,0 = −ψ−1(1/K) ≤ ρ̃ − ψ−1(β/ρ̃), since Kβ ≤ ρ̃. So
there exist T ∈ {1, . . . , n} and ℓ ∈ {1, . . . ,K} such that CT−1 − Vℓ,T−1 ≤ ρ̃−ψ−1(β/ρ̃) and

CT − Vℓ,T > ρ̃− ψ−1(β/ρ̃). In particular, we have ψ(Vℓ,T − CT + ρ̃) < β
ρ̃ , hence

Vℓ,T − Vℓ,T−1 ≥
β

pℓ,T
=

β

ψ(Vℓ,T−1 − CT−1)
≥ β

ψ(Vℓ,T − CT + ρ̃)
≥ ρ̃ ≥ CT − CT−1,

which contradicts the inequality CT−1 − Vℓ,T−1 < CT − Vℓ,T . This ends the proof of (47).
We have thus proved that for any 0 < γ < 1, η > 0 and β > 0 such that (46) holds, we have

RSn ≤ (γ + βK)n+
logK

η
+ S

{
ρ̃− 1

η
log

(
β

ρ̃
− γ

K

)}
+

log(Kδ−1)

2β
+
S log(Ken/S)

2β
,

with ρ̃ = 1+Kβ
1−γ exp

(
(1 + β)Kηγ

)
. For the numerical application, we first notice that the

bound trivially holds for 7
√
Ks ≥

√
n. For 7

√
Ks <

√
n, with s = S log

(
enK
S

)
+ 2 logK,

we choose

γ =

√
Ks

2n
, β = 3

√
s

nK
, and η =

1

5

√
s

nK
.
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We then use γ ≤ 1
7
√
2
, βK ≤ 3

7 , β ≤ 3
14 to deduce ρ̃ ≤ 2.25, and ρ̃S ≤ 0.05

√
nKs.

We check (46) by the upper bound Kη
γ

(
1 + βK

γ

)
Θ
(η(1+β)K

γ

)
≤ 0.84 < 1. We also use

− log
(β
ρ̃ − γ

K

)
≤ 1

2 log
(
3nK/s

)
≤ 1

2 log
(
3nK/S

)
. We thus have

RSn ≤
(
3 +

1√
2
+ 0.05 +

5

2
+

1

6

)√
nKs+

log(δ−1)

2β
≤ 6.5

√
nKs+

log(δ−1)

6

√
nK

s

The last inequality follows by integrating the deviations.

C.12 Proof of Theorem 24 (page 2619)

This proof requires some new arguments compared to the one for UCB1. First, we need to
decouple the arm, while not being too loose. This is achieved by introducing appropriate
stopping times. The decoupled upper bound on the pseudo-regret is (51). Secondly, we use
peeling arguments to tightly control the terms in the right-hand side of (51).

We may assume µ1 ≥ . . . ≥ µK . Using the trivial equality
∑K

i=1 ETi(n) = n, we have

Rn = max
1≤i≤K

E
n∑
t=1

(
gi,t − gIt,t

)
= n

(
max
1≤i≤K

Egi,t
)
−

n∑
t=1

EgIt,t

= n
(

max
1≤i≤K

µi

)
−

n∑
t=1

EµIt

= n
(

max
1≤i≤K

µi

)
− E

n∑
t=1

µIt

=

( K∑
i=1

ETi(n)
)(

max
1≤i≤K

µi

)
− E

K∑
i=1

µiTi(n) =
K∑
i=1

∆iETi(n).

C.12.1 First Step: Decoupling the Arms

For an arm k0, we trivially have
∑K

k=1∆kTk(n) ≤ n∆k0 +
∑K

k=k0+1∆kTk(n). Let ∆K+1 =

+∞, zk = µ1 − ∆k
2 for k0 < k ≤ K + 1 and zk0 = +∞. Let Z = min1≤s≤nB1,s and

Wj,k = 1IZ∈[zj+1,zj)(∆k−∆k0)Tk(n). By using E
∑k0

k=1 Tk(n) = n−E
∑K

k=k0+1 Tk(n), we get

Rn = E
K∑
k=1

∆kTk(n) ≤ n∆k0 + E
K∑

k=k0+1

(∆k −∆k0)Tk(n).

We have

K∑
k=k0+1

(∆k −∆k0)Tk(n) =

K∑
k=k0+1

K∑
j=k0

Wj,k =

K∑
j=k0

j∑
k=k0+1

Wj,k +

K∑
j=k0

K∑
k=j+1

Wj,k. (48)
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An Abel transformation takes care of the first sum of (48):

K∑
j=k0

j∑
k=k0+1

Wj,k ≤
K∑

j=k0

1IZ∈[zj+1,zj)n(∆j −∆k0) = n
K∑

j=k0+1

1IZ<zj (∆j −∆j−1). (49)

To bound the second sum of (48), we introduce the stopping times τk = min{t : Bk,t < zk}
and remark that, by definition of MOSS, we have {Z ≥ zk} ⊂ {Tk(n) ≤ τk}, since once we
have pulled τk times arm k its index will always be lower than the index of arm 1. This
implies

K∑
j=k0

K∑
k=j+1

Wj,k =

K∑
k=k0+1

k−1∑
j=k0

Wj,k =

K∑
k=k0+1

1IZ≥zk∆kTk(n) ≤
K∑

k=k0+1

τk∆k. (50)

Combining (48), (49) and (50) and taking the expectation, we get

Rn ≤ n∆k0 +
K∑

k=k0+1

∆kEτk + n
K∑

k=k0+1

P(Z < zk)(∆k −∆k−1). (51)

Let δ0 =
√

75K
n and set k0 such that ∆k0 ≤ δ0 < ∆k0+1. If k0 = K, we trivially have

Rn ≤ nδ0 ≤
√
75nK so that (22) holds trivially. In the following, we thus consider k0 < K.

Second step: Bounding Eτk for k0 + 1 ≤ k ≤ K.

Let log+(x) = max(log(x), 0). For ℓ0 ∈ N, we have

Eτk − ℓ0 =

+∞∑
ℓ=0

P(τk > ℓ)− ℓ0 (52)

≤
+∞∑
ℓ=ℓ0

P(τk > ℓ) =

+∞∑
ℓ=ℓ0

P(∀t ≤ ℓ, Bk,t > zk)

≤
+∞∑
ℓ=ℓ0

P

(
µ̂k,ℓ − µk ≥

∆k

2
−
√

log+ (n/Kℓ)

ℓ

)
.

Now let us take ℓ0 = ⌈7 log
(
n
K∆2

k

)
/∆2

k⌉ with ⌈x⌉ the smallest integer larger than x. For
ℓ ≥ ℓ0, since k > k0, we have

log+

( n

Kℓ

)
≤ log+

(
n

Kℓ0

)
≤ log+

(
n∆2

k

7K

)
≤
ℓ0∆

2
k

7
≤
ℓ∆2

k

7
,

hence ∆k
2 −

√
log+(n/(Kℓ))

ℓ ≥ c∆k, with c =
1
2−

1√
7
. Therefore, by using Hoeffding’s inequality

and (52), we get

Eτk − ℓ0 ≤
+∞∑
ℓ=ℓ0

P (µ̂k,ℓ − µk ≥ c∆k)

≤
+∞∑
ℓ=ℓ0

exp
(
−2ℓ(c∆k)

2
)
=

exp
(
−2ℓ0(c∆k)

2
)

1− exp (−2(c∆k)2)
≤ exp(−14c2 log(75))

1− exp
(
−2c2∆2

k

) ,
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where the last inequality uses ℓ0∆
2
k ≥ 7 log(75). Plugging the value of ℓ0, we obtain

∆kEτk ≤ ∆k

(
1 +

7 log
(
n
K∆2

k

)
∆2
k

)
+

∆k exp(−14c2 log(75))

1− exp
(
−2c2∆2

k

)
≤ 1 + 7

log
(
n
K∆2

k

)
∆k

+
exp(−14c2 log(75))

2c2(1− c2)∆k
,

where the last step uses that, since 1− exp(−x) ≥ x− x2/2 for any x ≥ 0, we have

1

1− exp
(
−2c2∆2

k

) ≤ 1

2c2∆2
k − 2c4∆4

k

≤ 1

2c2∆2
k(1− c2)

Third step: Bounding n
∑K

k=k0+1 P(Z < zk)(∆k −∆k−1).

Let Xt denote the reward obtained by arm 1 when it is drawn for the t-th time. The
random variables X1, X2, . . . are i.i.d. so that we have the maximal inequality (Hoeffding,
1963, Inequality (2.17)): for any x > 0 and m ≥ 1,

P
(
∃s ∈ {1, . . . ,m},

s∑
t=1

(µ1 −Xt) > x

)
≤ exp

(
−2x2

m

)
.

Since zk = µ1 −∆k/2 and since u 7→ P (Z < µ1 − u/2) is a nonincreasing function, we have

K∑
k=k0+1

P(Z < zk)(∆k −∆k−1) ≤ ∆k0+1P(Z < zk0+1) +

∫ 1

∆k0+1

P
(
Z < µ1 −

u

2

)
du. (53)

We will now concentrate on upper bounding P
(
Z < µ1 − u

2

)
for a fixed u ∈ [δ0, 1]. Let

f(u) = 8 log
(√

n
Ku
)
/u2. We have

P
(
Z < µ1 −

1

2
u

)
= P

(
∃1 ≤ s ≤ n :

s∑
t=1

(µ1 −Xt) >

√
s log+

( n

Ks

)
+
su

2

)

≤ P

(
∃1 ≤ s ≤ f(u) :

s∑
t=1

(µ1 −Xt) >

√
s log+

( n

Ks

))

+ P

(
∃f(u) < s ≤ n :

s∑
t=1

(µ1 −Xt) >
su

2

)
.

For the first term, we use a peeling argument with a geometric grid of the form 1
2ℓ+1 f(u) ≤

s ≤ 1
2ℓ
f(u). The numerical constant in δ0 ensures that f(u) ≤ n/K, which implies that for
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any s ≤ f(u), log+
(
n
Ks

)
= log

(
n
Ks

)
. We have

P

(
∃1 ≤ s ≤ f(u) :

s∑
t=1

(µ1 −Xt) >

√
s log

( n

Ks

))

≤
+∞∑
ℓ=0

P

(
∃ 1

2ℓ+1
f(u) ≤ s ≤ 1

2ℓ
f(u) :

s∑
t=1

(µ1 −Xt) >

√
f(u)

2ℓ+1
log

(
n2ℓ

Kf(u)

))

≤
+∞∑
ℓ=0

exp

−2
f(u) 1

2ℓ+1 log
(

n2ℓ

Kf(u)

)
f(u) 1

2ℓ

 =

+∞∑
ℓ=0

Kf(u)

n

1

2ℓ
=

16K

nu2
log

(√
n

K
u

)
.

For the second term we also use a peeling argument but with a geometric grid of the form
2ℓf(u) ≤ s ≤ 2ℓ+1f(u):

P
(
∃s ∈ ⌈f(u)⌉, . . . , n} :

s∑
t=1

(µ1 −Xt) >
su

2

)

≤
+∞∑
ℓ=0

P

(
∃2ℓf(u) ≤ s ≤ 2ℓ+1f(u) :

s∑
t=1

(µ1 −Xt) > 2ℓ−1f(u)u

)

≤
+∞∑
ℓ=0

exp

(
−2

(
2ℓ−1f(u)u

)2
f(u)2ℓ+1

)

=

+∞∑
ℓ=0

exp
(
−2ℓf(u)u2/4

)
≤

+∞∑
ℓ=0

exp
(
−(ℓ+ 1)f(u)u2/4

)
=

1

exp (f(u)u2/4)− 1
=

1

nu2/K − 1
.

Putting together the last three computations, we obtain

P
(
Z < µ1 −

1

2
u

)
≤ 16K

nu2
log

(√
n

K
u

)
+

1

nu2/K − 1
.
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Plugging this into (53) gives

K∑
k=k0+1

P(Z < zk)(∆k −∆k−1)

≤ 16K

n∆k0+1
log

(√
n

K
∆k0+1

)
+

∆k0+1

n∆2
k0+1/K − 1

+

[
−16K

nu
log

(
e

√
n

K
u

)
+

√
K

4n
log

(√ n
Ku− 1√
n
Ku+ 1

)]1
∆k0+1

≤ 16K

n∆k0+1
log

(
en∆2

k0+1

K

)
+

∆k0+1

n∆2
k0+1/K − 1

+

√
K

4n
log

(√ n
K∆k0+1 + 1√
n
K∆k0+1 − 1

)

≤ 16K

n∆k0+1
log

(
en∆2

k0+1

K

)
+

(
75

74
+

√
75√

75− 1

)
K

n∆k0+1

where the penultimate inequality uses ∆k0+1 ≥
√

75K
n and log(1 + x) ≤ x for any x ≥ 0.

Gathering the results of the three steps, we get

Rn ≤ n∆k0 +

K∑
k=k0+1

(
1 + 7

log
(
n
K∆2

k

)
∆k

+
exp(−14c2 log(75))

2c2(1− c2)∆k

)

+
16K

∆k0+1
log

(
en∆2

k0+1

K

)
+

(
75

74
+

√
75√

75− 1

)
K

∆k0+1

≤ n∆k0 +K + (16 + 7)K
log
(
n
K∆2

k0+1

)
∆k0+1

+ (16 + 16)
K

∆k0+1

≤ nδ01I∆≤δ0 + 23K
log
(
n
K∆2

k0+1

)
∆k0+1

+
33K

∆k0+1

≤ 23K
log
(
n
K max(∆, δ0)

2
)

max(∆, δ0)
+

108K

max(∆, δ0)

≤ 23K
log
(
110n
K max(∆, δ0)

2
)

max(∆, δ0)
,

which implies (22) and also Rn ≤ 24
√
nK. Since Proposition 34 implies ERn−Rn ≤

√
nK,

we have proved (23). For (24), Proposition 36 implies

ERn −Rn ≤ min

(
K

∆
,

√
nK

2

)
≤ K

√
75

2max(∆, δ0)
,

which implies

ERn ≤ 23K
log
(
133n
K max(∆, δ0)

2
)

max(∆, δ0)
.
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Appendix D. Pseudo-regret vs Expected Regret

The first two propositions hold for the four prediction games considered in this work and
defined in Figure 1.

Proposition 33 For deterministic adversaries, we have ERn = Rn. For oblivious adver-
saries, we have

ERn ≤ sup
deterministic adversaries

Rn.

In particular, this means that the worst oblivious adversary for a forecaster cannot lead
to a larger regret than the worst deterministic adversary.

Proof The first assertion is trivial. For the second one, let Eadv be the expectation
with respect to the eventual randomization of the adversary and Efor be the expectation
with respect to the randomization of the forecaster. For oblivious adversaries, we have
ERn = EadvEforRn, hence

ERn ≤ sup
deterministic adversaries

EforRn = sup
deterministic adversaries

Rn.

While the previous proposition is useful for upper bounding the regret of a forecaster
against the worst oblivious adversary, it does not say anything about the difference between
the expected regret and the pseudo-regret for a given adversary. The next proposition gives
an upper bound on this difference for fully oblivious adversaries, which are (oblivious)
adversaries generating independently the reward vectors.

Proposition 34 For fully oblivious adversaries, we have

ERn −Rn ≤
√
n logK

2
,

and

ERn −Rn ≤

√√√√2 log(K)max
i

E
n∑
t=1

gi,t +
logK

3
.

Proof The proof is similar to the one of the upper bound on the expected supremum of a
finite number of subgaussian random variables. We use the following lemma

Lemma 35 Let λ > 0 and W a random variable taking its values in [0, 1]. We have

E exp(λW ) ≤ exp
[(

exp(λ)− 1
)
EW

]
.

Proof By convexity of the exponential function, we have exp(λx) ≤ 1+
(
exp(λ)− 1

)
x for

any x ∈ [0, 1]. So we have E exp(λW ) ≤ 1 +
(
exp(λ)− 1

)
EW, hence Lemma 35.
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Let λ > 0, then by Jensen’s inequality and Lemma 35, we have

Emax
i

n∑
t=1

gi,t ≤ E
1

λ
log

K∑
i=1

exp

(
λ

n∑
t=1

gi,t

)

≤ 1

λ
log

K∑
i=1

E
n∏
t=1

exp(λgi,t)

=
1

λ
log

K∑
i=1

n∏
t=1

E exp(λgi,t)

≤ 1

λ
log

K∑
i=1

n∏
t=1

exp
(
[exp(λ)− 1]Egi,t

)
≤ logK

λ
+

exp(λ)− 1

λ
max
i

E
n∑
t=1

gi,t.

This implies

ERn −Rn ≤ inf
λ>0

(
logK

λ
+ λΘ(λ)max

i
E

n∑
t=1

gi,t

)
,

where Θ(λ) = exp(λ)−1−λ
λ2

. By using Lemma 32, one obtains the second inequality of the
theorem. Instead of using a variant of Bernstein’s argument to control E exp(λgi,t), one can

use Hoeffding’s inequality. This leads to the first inequality by taking λ =
√

2 logK
n .

We can strengthen the previous result on the difference between the expected regret
and the pseudo-regret when we consider the stochastic bandit game, in which the rewards
coming from a given arm form an i.i.d. sequence. In particular, when there is a unique
optimal arm, the following theorem states that the difference is exponentially small with n
(instead of being of order

√
n).

Proposition 36 For a given δ ≥ 0, let I =
{
i ∈ {1, . . . ,K} : ∆i ≤ δ

}
be the set of arms

“δ-close” to the optimal ones, and J = {1, . . . ,K} \ I the remaining set of arms. In the
stochastic bandit game, we have

ERn −Rn ≤
√
n log |I|

2
+
∑
i∈J

1

∆i
exp

(
− n∆2

i

2

)
,

and also

ERn −Rn ≤
√
n log |I|

2
+
∑
i∈J

{
8σ2i + 4∆i/3

∆i
exp

(
− n∆2

i

8σ2i + 4∆i/3

)

+
8σ2i∗ + 4∆i/3

∆i
exp

(
− n∆2

i

8σ2i∗ + 4∆i/3

)}
,
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where for any j ∈ {1, . . . ,K}, σ2j denotes the variance of the reward distribution of arm j.

In particular when there exists a unique arm i∗ such that ∆i∗ = 0, we have

ERn −Rn ≤
∑
i̸=i∗

1

∆i
exp

(
− n∆2

i

2

)
.

Note that the assumption on the uniqueness of the optimal arm in the last statement is
necessary as we already discussed in Remark 25.

Proof Let W
(1)
n = maxi∈I

∑n
t=1 gi,t −

∑n
t=1 gi∗,t and W

(2)
n = maxj∈{1,...,K}

∑n
t=1 gj,t −

maxi∈I
∑n

t=1 gi,t. We have ERn−Rn = EW (1)
n +EW (2)

n . From the same argument as in the
proof of Proposition 34, we have

EW (1)
n ≤

√
n log |I|

2
.

Besides, we have

EW (2)
n =

∫ +∞

0
P(W (2)

n > u)du

≤
∑
j∈J

∫ +∞

0
P

(
n∑
t=1

gj,t −max
i∈I

n∑
t=1

gi,t > u

)
du

≤
∑
j∈J

∫ +∞

0
P (Gj,n −Gi∗,n > u) du

=
∑
i∈J

∫ +∞

0
P (Gi,n − EGi,n + EGi∗,n −Gi∗,n > u+ n∆i) du

≤
∑
i∈J

∫ +∞

0

{
P
(
Gi,n − EGi,n >

u+ n∆i

2

)
+ P

(
EGi∗,n −Gi∗,n >

u+ n∆i

2

)}
du.

This last integrand is upper bounded by 2 exp
(
− (u+n∆i)

2

2n

)
from Hoeffding’s inequality,

and by exp
(
− (u+n∆i)

2

8nσ2
i+4(u+n∆i)/3

)
+ exp

(
− (u+n∆i)

2

8nσ2
i∗+4(u+n∆i)/3

)
from Bernstein’s inequality. To

control the two corresponding integrals, we note that for a nondecreasing convex function
χ going to infinity at +∞, we have∫ +∞

x
exp(−χ(u))du ≤

∫ +∞

x

χ′(u)

χ′(x)
exp(−χ(u))du =

exp(−χ(x))
χ′(x)

.

We apply this inequality to the functions r 7→ r2

2n and r 7→ r2

8nσ2
i+4r/3

to obtain respectively

EW (2)
n ≤ 2

∑
i∈J

∫ +∞

n∆i

exp

(
−u

2

2n

)
du ≤

∑
i∈J

1

∆i
exp

(
− n∆2

i

2

)
,
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and ∫ +∞

n∆i

exp

(
− u2

8nσ2i + 4u/3

)
du ≤ (8σ2i + 4∆i/3)

2

∆i(16σ2i + 4∆i/3)
exp

(
− n∆2

i

8σ2i + 4∆i/3

)
≤ 8σ2i + 4∆i/3

∆i
exp

(
− n∆2

i

8σ2i + 4∆i/3

)
,

hence

EW (2)
n ≤

∑
i∈J

{
8σ2i +

4∆i
3

∆i
exp

(
− n∆2

i

8σ2i + 4∆i/3

)
+

8σ2i∗ +
4∆i
3

∆i
exp

(
− n∆2

i

8σ2i∗ + 4∆i/3

)}
.
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