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Abstract 1 

Laboratory tests were conducted to investigate the effect of wetting-drying (W-D) 2 

cycles on the initiation and evolution of cracks in clay layer. Four identical slurry 3 

specimens were prepared and subjected to five subsequent W-D cycles. The water 4 

evaporation, surface cracks evolution and structure evolution during the W-D cycles 5 

were monitored. The effect of W-D cycles on the geometric characteristics of crack 6 

patterns was analyzed by image processing. The results show that the desiccation and 7 

cracking behaviour was significantly affected by the applied W-D cycles: the 8 

measured cracking water content θc, surface crack ratio Rsc and final thickness hf of 9 

the specimen increased significantly in the first three W-D cycles and then tended to 10 

reach equilibrium; the formed crack patterns after the second W-D cycle were more 11 

irregular than that after the first W-D cycle; the increase of surface cracks was 12 

accompanied by the decrease of pore volume shrinkage during drying. In addition, it 13 

was found that the applied W-D cycles resulted in significant rearrangement of 14 

specimen structure: the initially homogeneous and non-aggregated structure was 15 

converted to a clear aggregated-structure with obvious inter-aggregate pores after the 16 

second W-D cycle; the specimen volume generally increased with increasing cycles 17 

due to the aggregation and increased porosity. The image analysis results show that 18 

the geometric characteristics of crack pattern were significantly influenced by the 19 

W-D cycles, but this influence was reduced after the third cycle. This is consistent 20 

with the observations over the experiment, and indicates that the image processing can 21 

be used for quantitatively analyzing the W-D cycle dependence of clay desiccation 22 

cracking behaviour.  23 

 24 

Keywords: wetting-drying cycle; clay layer; desiccation crack; aggregate formation; 25 
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Introduction 1 

The formation of desiccation cracks on soil surface due to loss of water is a common 2 

natural phenomenon, and can significantly affect the soil performance in various 3 

geotechnical, agricultural and environmental applications. For example, a cracked soil 4 

is more compressible than an intact one at the same water content and the overall 5 

mechanical strength is weakened due to the presence of cracks (Morris et al., 1992). 6 

The size (width, length and depth), tortuosity, spatial distribution and connectivity of 7 

cracks govern the rate and the velocity at which solutes and microorganisms are 8 

transported in the soil, and thus control the dispersal of substances in soil (Horgan and 9 

Young, 2000). Most importantly, the soil hydraulic properties are directly controlled 10 

by the desiccation crack networks (Chertkov and Ravina, 1999; Chertkov, 2000). 11 

Many previous studies have indicated that the hydraulic conductivity of cracked soils 12 

is several orders of magnitude greater than that of intact soils (Boynton and Daniel, 13 

1985; Albrecht and Benson, 2001). This issue is therefore a major concern in design 14 

and construction of low permeability structures as clay buffers and barriers for nuclear 15 

waste isolation, liners and covers for landfill, etc.  16 

Over the past decades, a number of field studies and laboratory experiments have 17 

been undertaken to investigate the initiation and propagation of desiccation cracks in 18 

soils (Corte and Higashi 1960; Kleppe and Olson, 1985; Morris et al., 1992; Konrad 19 

and Ayad, 1997; Miller et al., 1998; Velde, 1999; Nahlawi and Kodikara, 2006; Tang 20 

et al., 2008; Tang et al., 2010). However, these investigations have been largely 21 

qualitative and most are limited in the description of desiccation cracking phenomena. 22 

More recently, techniques for quantifying the main features of the crack patterns have 23 

evolved from direct field measurement to more sophisticated analysis by image 24 

processing (Miller et al., 1998; Velde, 1999; Vogel et al., 2005). Image analysis has 25 

proved to be a powerful tool by which several geometric and morphologic parameters 26 

such as crack width, length, area, angle and their distribution characteristics can be 27 

determined effectively. In addition, some modelling and theoretical studies on 28 

desiccation cracking have also been conducted (Abu-Hejleh and Znidarčić, 1995; 29 

Ayad et al., 1997; Konrad and Ayad, 1997; Chertkov and Ravina, 1998; Chertkov, 30 

2000; Chertkov, 2002; Deng and Shen, 2006; Péron, 2008; Péron et al., 2009a). 31 

However, as soil is a highly complex material, the desiccation cracking behavior is 32 

governed by a large number of factors including mineral composition, clay content, 33 

relative humidity, temperature, layer thickness, boundary conditions etc. (Fang, 1997; 34 

Albrecht and Benson, 2001; Nahlawi and Kodikara, 2006; Rodríguez et al., 2007; 35 

Tang et al., 2007; Tang et al., 2008; Tang et al., 2010). It is therefore difficult to 36 

propose a rational model to describe this complex phenomenon with a reasonable 37 

number of parameters. The essential mechanism of desiccation cracking is still not 38 

well understood today and the prediction of cracks initiation and the associated crack 39 

network propagation also faces several challenges.  40 

It is recognised that the soil in-situ is subject to diurnal changes and seasonal rainy 41 

and sunny weather, and undergoes periodical wetting-drying (W-D) cycles. Several 42 

studies have been performed to investigate the effect of wetting and drying on soil 43 
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physical properties (Rao et al., 2001; Alonso et al., 2005; Nowamooz et al., 2009, 1 

Tang et al. 2011). However, the relationship between W-D cycles and desiccation 2 

cracking behaviour is still not clearly understood. In this study, the effect of W-D 3 

cycles on cracking behaviour was investigated by subjecting a group of initially 4 

saturated clay layers to five W-D cycles. The initiation and evolution of cracks on the 5 

specimen surface during the cycles were monitored. The geometric characteristics of 6 

surface crack patterns are described and quantified through image processing and the 7 

mechanisms involved are discussed. 8 

 9 

Material and methods 10 

Material 11 

The Romainville clay was used in this investigation. The physical properties are 12 

presented in Table 1. This clay is a lagoonal-marine deposit which is part of the Paris 13 

Basin Tertiary (Oligocene) formations. It is widely distributed over the eastern region 14 

of Paris, and has been considered responsible for the large amount of damages to 15 

buildings due to the swelling-shrinkage and cracking phenomenon. Various studies 16 

have been undertaken to analyse the hydro-mechanical behaviour of the clay under 17 

weather effects such as W-D cycles (Audiguier et al., 2007; Laribi et al., 2008; 18 

Geremew et al., 2009; Tang et al.,2009a; Tang et al., 2009b). However, little attention 19 

has been paid to the effect of W-D cycles on the desiccation cracking behaviour. 20 

 21 

Test methods 22 

The air-dried Romainville clay was crushed and sieved at 2 mm. Saturated slurry 23 

specimens were prepared by mixing the crushed powder with distilled water at a water 24 

content of approximately 170 % (g g-1) (Note that all the given water contents of the 25 

tested specimens in the next sections is ‘gravimetric’ water content, unless otherwise 26 

specified). A desired quantity of slurry was then poured into glass cups (117 mm in 27 

diameter). To remove entrapped air bubbles in the slurry, these cups were placed on a 28 

vibration device for 5 minutes. Finally, the cups were sealed with plastic membrane 29 

and left for at least 3 days. The final settled layer thickness was about 10 mm.  30 

Four parallel specimens were prepared and dried at constant room temperature 31 

(25 ± 1 °C, 50 ± 5 % of relative humidity) until the weight of specimen was stabilized, 32 

i.e., the first W-D cycle was completed. The subsequent wetting was started by 33 

pouring distilled water directly into the glass cups. During this wetting process, 34 

sufficient water was provided to ensure full submergence of the specimen and no 35 

mixing was applied. The glass cups were again sealed with plastic membrane to 36 

prevent water evaporation. After three days, the specimens were exposed to room 37 

conditions to be dried again. This procedure was repeated and finally a total of five 38 

W-D cycles was applied. 39 

The schematic set-up used in this study is illustrated in Fig. 1. In order to measure 40 

the variation of water content during drying, the specimen was placed on a balance 41 
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(with an accuracy of 0.01 g) to monitor the weight. A digital camera was fixed above 1 

the specimens to capture the surface image during wetting and drying cycles in 2 

different time steps. Fig. 2 presents a typical crack pattern taken during the first 3 

drying path. With the application of image processing, the surface crack ratio (Rsc) or 4 

crack intensity factor CIF (Miller et al., 1998), defined as the ratio of the area of 5 

cracks to the total initial area of specimen, was determined to quantify the cracking 6 

extent during drying. At the end of each W-D cycle, other geometric parameters - the 7 

number of intersections per unit area Nint, number of crack segments per unit area Nseg, 8 

mean crack length Lav, mean crack width Wav and mean clod area Aav - were also 9 

determined from the final crack patterns. Note that the crack length was determined 10 

by calculating the length of the mid-axis of crack segment between two intersections. 11 

For this purpose, a skeletonising operation (Gonzalez and Woods, 2002) was initially 12 

performed by repeatedly removing pixels from the boundaries of cracks until they are 13 

reduced to single-pixel-wide skeletons. The crack width was sampled in orthogonal 14 

direction and the shortest distance between the crack boundaries was calculated. The 15 

clods are surrounded by cracks, and their areas are defined as the pixel number of the 16 

regions. All these parameters were obtained by applying the software CIAS which 17 

was developed by our research group. More details can be found in Liu et al. (2008) 18 

and Tang et al. (2008). Eight clods were selected from each specimen in the end of 19 

each drying period to determine their thickness using calliper, and the mean value is 20 

regarded as the final thickness of specimen layer. 21 

In order to investigate the volume shrinkage behaviour of specimens during drying, 22 

four other identical specimens were prepared following the same procedure described 23 

above. During the first drying path, small clods were taken from the specimens in 24 

different time steps to determine their water contents θ and density ρ. The clod 25 

volume used for the density determination was measured by immersing it in a 26 

non-wetting hydrocarbon liquid. Then the void ratio e and the corresponding degree 27 

of saturation Sr of specimens can be determined using the following equations: 28 

1
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where ρs is the density of the solid phase of the Romainville clay, equal to 2.79 Mg 31 

m-3 (Table 1). 32 

Results  33 

Evaporation, shrinkage and cracking process 34 

The measured water content θ at various times t during the first drying path for the 35 

four separate specimens are shown in Fig. 3 (desiccation curve). Two distinct 36 

evaporation stages can be indentified: a constant evaporation stage during which 37 

water content decreases linearly with time; and a subsequent falling evaporation stage 38 
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during which water loss slows down gradually until the residual water content of 1 

about 4.3 % is reached.  2 

The determined shrinkage curve (e versus θ) is presented in Fig. 4, from which two 3 

transition points between linear and exponential phases can be determined - the air 4 

entry (AE) point and the shrinkage limit (SL) point (Stirk, 1954; Boivin et al., 2004; 5 

Groenevelt and Grant, 2004; Cornelis et al., 2006; Chertkov, 2007). The water 6 

contents at the point of AE and SL are approximately 18% and 12%, respectively. 7 

After desiccation cracks appear on the surface of the specimen, the surface crack ratio 8 

Rsc at different water content θ was determined by image processing, and the result is 9 

also plotted in Fig. 4 as the cracking curve (Rsc versus θ). This indicates that the water 10 

content at the onset of cracking ranges from 38 to 43%, which is much higher than the 11 

AE value. Therefore the specimens are still fully saturated as cracking occurs. During 12 

the initial stage, the Rsc increases rapidly with decreasing water content and 13 

decreasing pore volume. However, with further drying, the increment of Rsc slows 14 

down once the water content is close to AE point (θ = 18%). After the SL (θ = 12%) is 15 

reached, the Rsc approaches a relative steady value of 14.6-15.8 % for the four 16 

separate specimens. 17 

 18 

Cracking water content, final surface crack ratio and layer thickness 19 

During drying, when the first crack is observed on the specimen surface, the 20 

corresponding water content is herein defined as the cracking water content θc. Fig. 5 21 

shows the determined θc of the four specimens during each drying path. It indicates 22 

that θc increases rapidly during the first three drying paths, and does not change 23 

significantly during the subsequent fourth and fifth drying paths. For instance, the 24 

mean value of θc of the four specimens during the first drying path is 40.5%; 25 

increasing to 76.1% during the third drying path, whereas the mean value of θc during 26 

the fifth drying path is 80.2%, only 1.2% higher than the fourth drying path.  27 

After each W-D cycle, the final surface crack ratio Rsc and the mean final thickness 28 

hf were also determined and are presented in Fig. 6 and Fig. 7 respectively. Similar to 29 

θc, the final mean value of Rsc and hf of the four specimens also increase quickly in 30 

the first three W-D cycles, while the increment rate slows down in the subsequent 31 

cycles.  32 

 33 

Geometric parameters of crack pattern 34 

Quantitative analysis of the crack pattern is important when studying clay cracking. 35 

Indeed, the geometric parameters are helpful in evaluating the hydro-mechanical 36 

properties of the clay-water system. They are also related to the variation of the 37 

stress-strain state and may provide a way to investigate the essential mechanisms of 38 

cracking. In addition, the crack propagation behavior and the geometric characteristics 39 

of the crack pattern reflect the material plasticity and mineral compositions. Perrier et 40 

al. (1995) indicated that if the real structure features of crack pattern can be 41 

determined, the soil response to wetting and drying can be predicted. 42 
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Table 2 summarizes the mean values of the geometric parameters which were 1 

determined from the final crack patterns after each W-D cycle, the corresponding 2 

standard deviation (SD) are also presented. It is found that the mean values of all the 3 

parameters in the first three cycles are much more variable than that in the subsequent 4 

cycles. For Nint and Nseg, they reach the maximum value after the second cycle and 5 

decrease after the third cycle. After that, Nint and Nseg increase slightly with further 6 

increase of W-D cycles. Moreover, the ratio of Nseg/Nint is greater than 1.5 and less 7 

than 2 for all the cycles, indicating that, three or four crack segments sharing one 8 

intersection, is the dominant outline of the crack pattern. For Lav, the maximum and 9 

the minimum values are 8.43 mm and 7.57 mm respectively after the first and second 10 

cycle. It is between 8.07 and 8.22 mm after the third cycle and no obvious trend can 11 

be observed. For Wav, the minimum value is 1.01 mm that is observed after the first 12 

cycle; it reaches a maximum value at 1.86 mm after the third cycle and decreases 13 

slightly in the subsequent cycles. Based on the obtained values of Lav and Wav, it can 14 

be deduced that most of the formed cracks in the first drying cycle are slim and 15 

threadlike. For Aav, the maximum value is 1.18 cm2 observed after the first cycle. It 16 

generally decreases with increasing cycles and finally stabilizes at 0.65 cm2, 17 

indicating that the clods become smaller due to fragmentation. These results indicate 18 

that the geometric and morphologic characteristics of crack patterns are significantly 19 

influenced by W-D cycles, but the influence intensity declines after the third cycle. 20 

Moreover, the corresponding SD of the determined parameters generally decreases 21 

with increasing cycles, indicating that the initial densities, sizes or dimensions of the 22 

crack elements show significant variability but become more homogeneous under the 23 

effects of W-D cycles.   24 

 25 

Visual observations and discussion 26 

Crack pattern and structure evolution after W-D cycles 27 

Fig. 8 presents the typical crack pattern after each W-D cycle. It indicates that the 28 

specimen surface was split to separate clods by the crack networks. After the first 29 

W-D cycle (Fig.8 (a)), the shapes of the clods are relatively regular and most of the 30 

clods are close to quadrangles or pentagons; the crack segments are smooth and 31 

generally perpendicular to each other. This is consistent with the observations of 32 

Vogel et al. (2005) and Peron et al. (2009b), and can be explained using the maximum 33 

stress release criterion and crack propagation criterion (Lachenbruch, 1962; Morris et 34 

al., 1992).  35 

After the second W-D cycle (Fig. 8 (b)), the shapes of the separated clods are more 36 

irregular and the crack segments are more jagged than that observed in Fig. 8 (a). The 37 

second W-D cycle also caused dramatic aggregate formation from the initially 38 

non-aggregated structure. The formed clods were degraded significantly and a large 39 

number of inter-aggregate pores can be observed.  40 

Figs. 8 (c), (d) and (e) indicate that the geometric and morphologic characteristics 41 

of the crack patterns are similar to each other after the third, fourth and fifth W-D 42 
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cycle. This observation is consistent with the quantitative results of the geometric 1 

parameters in Table 2. In the tests of Yesiller et al. (2000) and Tang et al. (2008), most 2 

cracks after the second and third W-D cycles were found to be situated at the same 3 

locations as that after the first W-D cycle. However, this was not evident in this study 4 

when comparing Figs. 8 (a), (b) and (c). This can be attributed to the heterogeneous 5 

aggregated-structure formed during the wetting process. Many weak zones were 6 

created, which significantly control the start positions of cracks during the subsequent 7 

drying period (Yong and Warkentin, 1975).  8 

Based on the results of surface crack ratio Rsc and layer thickness hf shown in Figs. 9 

6 and 7, the final total volume of the dried clods (without the cracks) as well as the 10 

increment of porosity after each W-D cycle can be calculated. It is found that, after the 11 

fifth cycle, the porosity of the clods increases by approximately 21%. This is 12 

consistent with the findings of the previous studies on remolded and natural soils 13 

(Sartori et al., 1985; Pires et al., 2008), and can be explained by the progressive 14 

increase in pore volume and the average diameter of the pores with the increase of 15 

W-D cycles (Geremew et al., 2009).  16 

 17 

Crack pattern evolution and aggregate formation during wetting 18 

A time series of 6 images is shown in Fig. 9 to illustrate the evolution of surface 19 

cracks and aggregate formation process during the second wetting path. For reasons of 20 

simplicity and clarity, only the white marked area in Fig. 8 (a) is presented. Fig. 9 (a) 21 

shows the initial morphology of desiccation crack pattern taken from Fig. 8 (a). Figs. 22 

9 (b) and (c) indicate that injecting water led to immediate collapse of the clods: the 23 

clods were broken down into several small aggregates. Meanwhile, some new 24 

micro-cracks induced by wetting appeared on the specimen’s surface.  25 

Notably, the collapse or destruction firstly occurred on the clods edges, especially 26 

on the corner positions (circled zones in Fig. 9 (b)). This is because rapid hydration 27 

firstly occurred at these less stable positions, and the previous cracks provided free 28 

spaces for clay swelling. 29 

Upon further wetting, the original desiccation cracks tend to be increasingly narrow 30 

due to the filling of the exfoliated aggregates from the clods as well as the volume 31 

swelling of the clods. Fig. 9 (d) shows that the original desiccation cracks were fully 32 

closed after about 2.5 min wetting. However, there were more and more new 33 

micro-cracks induced by wetting. These new cracks are mainly resulted from the 34 

differential swelling pressures and the inner stresses during the wetting process of the 35 

clods. Fig. 9 (d) also shows that the specimen surface is not as flat and smooth as its 36 

initial state, but is ‘heaved’ along the trace of the original desiccation crack segments, 37 

as quadrangle marked in Figs. 9 (c)-(e). This is because the high swelling potential of 38 

the clay minerals was constrained so that the clods jostle against each other.  39 

Comparison between Fig. 9 (e) and Fig. 9 (f) shows that the surface morphologies 40 

are similar to each other. The edges of the aggregates are clear and the 41 

wetting-induced new cracks can still be identified even after a long time (72 hours) 42 

has elapsed. However, in the test of Tang et al. (2008), the aggregates breakdown into 43 
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individual fine particles and the new cracks were completely closed after a short 1 

wetting time of 2 hours. This can be attributed to the different clay fractions in the 2 

studied materials. For Romainville clay, the clay fraction is 79 %, which is 57% 3 

higher than Xiashu clayey soil used by Tang et al. (2008). The dispersion of 4 

aggregates was therefore prevented by the strong bonds between clay particles.  5 

Pictures of the specimen subjected to the third wetting path are presented in Fig. 10. 6 

The observations are slightly different from the second wetting process (Fig. 9). After 7 

water was poured into the glass cup, clods degraded rapidly and some small aggregate 8 

plates floated on the water surface (Fig. 10 (a)). About 1.5 min later, the original 9 

desiccation cracks were fully closed (Fig. 10 (b)); after a period of 72 h wetting, all 10 

the clods were broken down and a large amount of individual aggregates can be 11 

observed (Fig. 10 (c)). However, no new micro-cracks or “jostle effects” were 12 

observed, as in the second wetting path (Fig. 9).  13 

During the fourth and fifth wetting paths, no significant difference was observed as 14 

compared to the third wetting path, and as a result, no pictures are presented.  15 

 16 

Effect of W-D cycles on cracking water content 17 

Fig. 5 demonstrates that the W-D cycles result in significant increase in cracking 18 

water content θc. Moreover, near 90% of the increase occurs in the first three cycles. 19 

Previous studies indicate that cracking occurs when the tensile stress induced by the 20 

developed suction exceeds the tensile strength of the specimen (Corte and Higashi, 21 

1960; Morris et al., 1992; Miller et al., 1998; Péron et al., 2009b). The effects of W-D 22 

cycles on this cracking behaviour can be explained by considering the specimen fabric, 23 

as follows:  24 

i) during W-D cycles, volume shrinkage and cracking would result in irreversible 25 

fabric changes, decrease of specimen integrity and increase of weak zones in 26 

specimen (Yong and Warkentin, 1975). As a result, the specimen tensile strength was 27 

reduced, promoting specimen cracking at a higher θc upon the subsequent drying;  28 

ii) the multiple W-D cycles gave rise to an increase in material heterogeneity as 29 

discussed in the above sections. For instance, after the first W-D cycle, the initial 30 

homogenous structure was changed to aggregated-structure during the subsequent 31 

W-D cycles (Fig. 8). Due to the non-uniform distribution characteristics of aggregate 32 

sizes and inter-aggregate pore sizes, the tensile stresses developed during subsequent 33 

drying cycles would be also non-uniform and can easily be concentrated at defects 34 

with lower tensile strength. Weinberger (1999) and Tang et al. (2008) have observed 35 

that cracks first initiated at surface defects, and emphasized that the surface defects 36 

can trigger or promote crack initiation due to shrinkage distortion of the surrounding 37 

medium and tensile stress concentration. 38 

Note that because of the difficulty in drying tests, there has been no experimental 39 

data concerning the actual value of the local water content at the moment of crack 40 

initiation. The commonly measured water content in the laboratory is a mean value 41 

and can not completely reflect the moisture distribution characteristics in localised 42 

positions. To reduce the test error, the simplest way is to prepare an initially relatively 43 
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homogenous specimen with a limited thickness – thus thin layer (10 mm thick) slurry 1 

specimens were prepared in this study. Generally, the physical, hydraulic and 2 

mechanical properties of the specimen vary permanently with moisture changes 3 

during drying. In order to better understand the intrinsic mechanism of desiccation 4 

cracking , future studies should also take into account some dynamic factors such as 5 

evaporation rate, suction development rate, volume shrinkage rate and tensile strength 6 

development rate, in addition to the critical water content θc . 7 

 8 

Equilibrium state during multiple W-D cycles 9 

Based on all the results shown in Figs. 5 (θc), 6 (Rsc), 7 (hf) and Table 2, it can be 10 

concluded that the cracking behaviour reached a relative equilibrium state after the 11 

specimens were subjected to the third cycle. This conclusion is also supported by the 12 

observations shown Fig. 8: no significant difference can be observed for the crack 13 

patterns after the third, fourth and fifth W-D cycle. Presumably the rearrangement of 14 

specimen fabric diminishes and finally ceases after certain a number of W-D cycles. 15 

Previous studies on this subject also confirmed that there is an equilibrium state 16 

during multiple W-D cycles, but the corresponding numbers of cycles depend on 17 

material nature especially the clay fraction. Generally, clayey soils with high plasticity 18 

need more W-D cycles to reach the equilibrium state than silty or sandy soils 19 

(Al-Wahab and EI-Kedrah, 1995; Yesiller et al. 2000; Omidi et al., 1996).  20 

 21 

Conclusions 22 

Desiccation and cracking behaviour of clay layers from a slurry state upon five 23 

wetting-drying (W-D) cycles were investigated through laboratory experiments. The 24 

process of water evaporation, surface cracks evolution, structure evolution and 25 

volume shrinkage behaviour were monitored and have been discussed here. The 26 

geometric characteristics of crack pattern after each W-D cycle were quantitatively 27 

analyzed by image processing. The following conclusions can be drawn: 28 

  (1) during the first drying path, the water evaporation process is composed of two 29 

stages: a constant rate zone and a subsequent decreasing rate zone; the increase of 30 

surface crack ratio Rsc during drying was accompanied by progressive pore volume 31 

shrinkage, and the Rsc reached stabilization as the water content reached the shrinkage 32 

limit; the final crack pattern was dominated by polygonal clods and smooth crack 33 

networks; 34 

(2) during the second wetting path, the poured water resulted in rapid collapse of 35 

clods, and the desiccation cracks formed in the previous drying path were quickly 36 

closed; meanwhile, a large number of new micro-cracks induced by wetting appeared 37 

on the specimen surface that divided the clods into smaller aggregates, and a typical 38 

aggregated-structure was developed and significantly intensified the specimen 39 

heterogeneity; moreover, the second wetting path led to significant rearrangement of 40 

clay particles and modification of the pore network; these processes are generally 41 

irreversible and drastically influence the desiccation cracking behaviour during the 42 
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subsequent drying path; 1 

(3) after the second drying path, since the specimen homogeneity decreased, the 2 

shapes of the clods were more irregular and the crack segments were more jagged 3 

than that observed after the first drying path; the clods showed clear 4 

aggregated-structure with a large amount of inter-aggregate pores; the bonds between 5 

the formed aggregates were broken quickly in the third wetting path and no new 6 

micro-cracks were induced;  7 

(4) an equilibrium state can be reached after a certain numbers of W-D cycles; for 8 

the tested Romainville clay, it was observed that the rearrangement of specimen fabric 9 

or structure reached an apparent state of equilibrium after the third W-D cycle: before 10 

that, the measured cracking water content θc, final surface crack ratio Rsc and layer 11 

thickness hf increased significantly with increasing cycles, but after, the effects of 12 

W-D cycles on the cracking behaviour and the cracking pattern became insignificant; 13 

(5) image processing provided useful information on the geometric characteristics 14 

of crack patterns. The effect of W-D cycle on desiccation and cracking behaviour can 15 

therefore be quantitatively described through these specific parameters. 16 

Generally, field soils are very complex and conditioned by a large number of 17 

variables. Cracking is a 3D phenomenon and the patterns are usually composed of 18 

irregular polygonal shapes. Quantification of a 3D crack pattern is a much more 19 

challenging task than the 2D process described in this investigation. However, it is 20 

believed that the findings of this laboratory experiment are helpful for better 21 

understanding the interrelationship between the sequence of seasonal processes and 22 

the evolution of soils or mud properties. In addition, as multiple W-D cycles can result 23 

in possible changes in clay structure and cracking behaviour, the hydraulic and 24 

mechanical properties of this type of materials must depend on the number of W-D 25 

cycles. Further attention should therefore be paid to the engineering fields where 26 

swelling clays are involved.  27 
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Tables 1 

 2 

Table 1 Physical properties of Romainville clay 3 

Physical properties Values 

Density of the solid phase 

Liquid limit 

Plastic limit 

Plasticity index 

USUCa classification 

Clay (<2µm) 

Clay composition 

Specific surface area 

2.79 Mg m-3 

77 % 

40 % 

37 % 

CH 

79 % 

Illite and smectite 

340 m2/g 

a-Unified Soil Classification System 4 

 5 

Table 2 Mean values of crack quantitative parameters and the 6 

corresponding standard deviation (SD) after each wetting-drying cycle 7 

After each 

wetting-drying cycle 

Nint 

(cm-2) 

SD of 

Nint 

Nseg 

(cm-2) 

SD of 

Nseg 

Lav 

(mm) 

SD of 

Lav 

Wav 

(mm) 

SD of 

Lav 

Aav 

(cm2) 

SD of 

Lav  

First 

Second 

Third 

Fourth 

Fifth 

1.09 

1.52 

1.37 

1.43 

1.44 

0.17  

0.12  

0.08  

0.05  

0.07 

1.78 

2.45 

2.13 

2.16 

2.22 

0.12  

0.19  

0.11  

0.08  

0.05 

8.43 

7.57 

8.12 

8.07 

8.22 

4.50  

3.75  

3.42  

3.31  

2.75 

1.01 

1.52 

1.86 

1.74 

1.73 

0.63  

0.49  

0.42  

0.38  

0.37 

1.18 

0.78 

0.69 

0.65 

0.65 

1.20  

0.56  

0.53  

0.53  

0.49  
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Figure captions 8 

Fig. 1 Schematic drawing of set-up 9 

Fig. 2 A typical desiccation crack pattern of specimen during the first 10 

drying path 11 

Fig. 3 Desiccation curves of the specimens during the first drying path 12 

Fig. 4 Variation of surface crack ratio Rsc and void ratio e with water 13 

content θ  during the first drying path 14 

Fig. 5 Cracking water content θc of the specimens during each drying path 15 

Fig. 6 Surface crack ratio Rsc after each W-D cycle 16 

Fig. 7 Mean thickness hf of specimen layer after each W-D cycle 17 

Fig. 8 Typical desiccation crack patterns after each W-D cycle (pictures 18 

were taken from the same specimen) 19 

Fig. 9 Evolution of crack pattern during the second wetting path 20 

Fig. 10 Evolution of surface cracks during the third wetting path 21 

 22 

 23 



 17 

Figures 24 

Camera
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 25 

Fig. 1 Schematic drawing of set-up 26 

 27 

 28 

Fig. 2 A typical desiccation crack pattern of specimen during the first 29 

drying path 30 
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Fig. 3 Desiccation curves of the specimens during the first drying path 32 
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Fig. 4 Variation of surface crack ratio Rsc and void ratio e with water 35 

content θ  during the first drying path 36 



 19 

 37 

1 2 3 4 5
35

40

45

50

55

60

65

70

75

80

85

 S1
 S2
 S3
 S4

C
ra

ck
in

g 
w

at
er

 c
on

te
nt

 θ
c,

 %

Wetting-drying cycles

 

 

 38 

Fig. 5 Cracking water content θc of the specimens during each drying path 39 
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Fig. 6 Surface crack ratio Rsc after each W-D cycle 41 
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Fig. 7 Mean thickness hf of specimen layer after each W-D cycle 45 

 46 

Fig. 8 Typical desiccation crack patterns after each W-D cycle (pictures 47 

were taken from the same specimen) 48 



 21 

 49 

 50 

Fig. 9 Evolution of crack pattern during the second wetting 51 

path  52 

 53 

Fig. 10 Evolution of surface cracks during the third wetting path 54 
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