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Abstract

In this work we discuss a way to compute the impact of free-surface
flow on nonlinear structures. The approach chosen rely on a partitioned
strategy that allows to solve strongly coupled fluid-structure interaction
problem. It is then possible to re-use existing and validated strategy
for each sub-problem. The structure is formulated in a Lagrangian way
and solved by the finite element method. The free-surface flow approach
considers a Volume-Of-Fluid (VOF) strategy formulated in an Arbitrary
Lagrangian-Eulerian (ALE) framework, and the finite volume are used to
discrete and solve this problem. The software coupling is ensured in an
efficient way using the Communication Template Library (CTL). Numer-
ical examples presented herein concern 2D validations case but also 3D
problems with a large number of equations to be solved.

1 Introduction

In this work we focus on fluid-structure interaction problems, with free-surface
flows. The kind of application motivating this development stems from the
coastal engineering problems, chief among them dam-breaking problem and
tsunami (e.g. see [29]). The main difficulty for this class of problems is
not only the usual one for fluids pertaining to the free-surface flow (e.g. see
[22, 42, 33, 5, 72, 70, 71]) but also the fluid-structure interface. Providing reli-
able description at the interface for a fluid-structure interaction problem is quite
a challenge, since the descriptions generally used for each of the sub-problems
are different: for the structure part, it is natural to follow material point motion
in a Lagrangian formulation, while an Eulerian formulation is often preferred
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for the fluid part. Naturally, there are bridges between these two formulations,
which have to be derived carefully for fully nonlinear setting.

Moreover, the optimal discretization technics for each sub-problem are in
general not the same. For the solid part, the method widely used since the
sixties is the Finite Element Method [81, 41], even if it is possible to solve the
Partial Differential Equations that describe the continuum problem either by
other discretization techniques such as Finite Volume [69]. For the fluid part,
two different methods are mainly used: either the Finite Element Method [80,
9], or the Finite Volume Method [28]. The first one has the advantages of a
complete mathematical framework and well established convergence properties,
but requires special care to stabilize the solution when incompressible flow are
aimed at [32]. For the second one, the mathematical framework is slightly more
difficult to complete but the more physical foundation allows to naturally get
good conservative properties. There are bridges that combine advantages of
both formulations [62]. In this work, we choose the Finite Element Method for
structure discretization and the Finite Volume Method for fluid discretization.
This choice provides the largest selection of existing software products to be
used for the software coupling strategy we suggest herein.

For the fluid-structure interaction framework, it is required to consider flow
problem in a moving domain, as the fluid domain shares at least one of its
boundaries with the structure that is undergoing deformation. It is possible to
solve this kind of problem with for instance the fictitious domain approach [78] or
with an Arbitrary Lagrangian-Eulerian approach [17, 37]. The latter requires
to solve the deformations of the fluid underlying grid, that is often not able
to support very large deformation without re-meshing; nevertheless it is often
the one chosen in existing tools to solve fluid problems in moving domain, and
was thus also used herein. The impossibility to represent too large deformations
without re-meshing makes the choice of another method necessary when complex
fluid domain deformations such as the ones observed for the sloshing of a wave
are represented. Here a two-phase approach is chosen where both air and water
are represented, and a characteristic function is used to distinguish the two
phases. To solve this problem, a Volume-Of-Fluid strategy is considered herein.

For coupled fluid-structure interaction problems, the monolithic [38, 65, 20]
and partitioned strategy [24, 53, 59, 11, 27, 58, 18, 31, 26, 77] can be used. The
monolithic approach is abandoned in favor of the partitioned approach. The
latter is preferred for its modularity and the possibility of re-using existing soft-
ware. The partitioned approach used here is based on the Direct Force-Motion
Transfer. Both explicit and implicit coupling algorithms for multi-physics prob-
lems are detailed. An explicit strategy leads to the so-called “Added Mass
effect”, and for that justifies the use of more costly implicit solvers.

Implicit solvers can use either a fixed-point strategy that is known to be
rather slow to converge, or the Newton strategy that requires building up and
evaluating the costly Jacobian. In this work, the fixed-point strategy based on
the Block Gauss-Seidel algorithm (DFMT-BGS) with an adaptive relaxation
parameter [51] shows sufficient performances for the example proposed. The
properties as well as stability of the implicit coupling DFMT-BGS algorithms
used herein are presented in detail in [48].

In this work, a general fluid-structure interaction framework based on exist-
ing software was used. This framework was built using the middleware Commu-
nication Template Library (CTL) [61] which offers good performances, and can
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therefore be used for scientific computing of large systems. An important fea-
ture is the possibility to couple types of software product that were initially not
programmed to be coupled (here FEAP for the structure and OpenFOAM for the
fluid), even if they are based on different discretization techniques (respectively
FV for the fluid and FE for the structure) and were programmed in different
languages, C++ and Fortran. For more details on the implementation, see [49]

The outline of this paper is as follow: in the subsequent section we present the
chosen formulations for the structure and fluid sub-problem. In particular, the
fluid formulation is given in Arbitrary-Lagrangian Eulerian framework, along
with the modifications to account for the free-surface flow. In Section 4, we
describe the coupling between the fluid and the structure sub-problems. In
Section 5, we give and comment the results of illustrative numerical examples
dealing with free-surface flow impacting a structure in two and three-dimensions
as well as comparison with existing works. The concluding remarks are given
in the last section.

2 Description of the structure

2.1 Structure equations of motion

Ωs

t = t0

∂Ωs,D

∂Ωs,N Ωs

∂Ωs,D

∂Ωs,N

t

t

b

u

t

b

u

Figure 1: Solid problem

The structure motion is based on a Lagrangian description. Namely, we
consider a structure domain Ωs, with imposed displacements u on its Dirichlet
boundary ∂Ωs,D, moving under the traction forces t imposed on its Neumann
boundary ∂Ωs,N and a body load b applied in the whole domain Ωs (see Fig. 1).
The motion is dynamic and evolves in time on the segment [0, T ]. The govern-
ing equation for a structure describes the momentum conservation and is also
known as the Cauchy equation. The strong form of the structural problem writ-
ten with respect to the deformed configuration is as follows:
Given: u on ∂Ωs,D × [0, T ], t on ∂Ωs,N × [0, T ] and b in Ωs × [0, T ].
Find: u ∈ Ωs × [0, T ] so that:

∇ · σ + ρs
(

b − ∂2
t u

)

= 0 in Ωs × [0, T ] (1)

where ρs denotes the material density of the solid domain, u its displacement
field and ∂2

t u the accelerations. The Cauchy stress tensor σ in the deformed
configuration can be linked to the second Piola-Kirchhoff stress tensor P for-
mulated in the initial configuration through the gradient F of the deformation
and its Jacobian (see [41]).
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To close this Partial Differential Equations system one needs to link the dis-
placements (or one of its derived field) and the stresses together with constitutive
behavior law. An elastic material model based on St.-Venant-Kirchhoff consti-
tutive equation or neo-Hookean constitutive equation is assumed in the two
presented example to link the stress Cauchy tensor σ and the Green-Lagrange
strain tensor E:

F−1JσF−T = C : E (2)

where C denotes the constitutive fourth-order elasticity tensor1. It is also possi-
ble to use more complex behavior, such as non-linear plasticity, but this is not
explored herein. The non-linearity of the problem here comes from the large dis-
placement described by the following relation between Green-Lagrange tensor
E and the deformation gradient F = I+∇u :

E =
1

2

(

FTF− I
)

(3)

2.2 Structure discretization using Finite Element Method

It is a priori impossible to find directly the exact solution to the problem defined
above. The idea is to find the best approximation of the solution in a space
where the solution can be found numerically. The FEM formulations [8, 82, 41]
derived from the equilibrium equation (1) rely on the associated weak forms of
this problem:
Given: t on ∂Ωs,N × [0, T ] and b in Ωs × [0, T ].
Find u ∈ U such that, for all δu ∈ U0:

Gs(u ; δu) :=

∫

Ωs

ρs∂
2
t u · δu +

∫

Ωs

σ : ∇δu −

∫

Ωs

b · δu −

∫

∂Ωs

t · δu

= 0

where U and U0 are functional spaces for the solution and its variation.
The solid domain Ωs is then discretized in a finite number of elements Th =

(κe)e=1,...,nel
so that the whole space is covered by the finite elements that do

not intersect. The research space associated with the solution is restrained to
the space of continuous piecewise polynomial functions defined in each finite
element domain. This space is denoted:

Uh = U ∩
{

u ∈ C0 (Ωs)
∣

∣

∣
u |κ ∈ P

p (κ) , ∀κ ∈ Th
}

(4)

where Pp (κ) is the space of polynomials of order p on κ. The same restriction
holds on the associated vector space. The FE problem is defined as:
Given: t on ∂Ωs,N × [0, T ] and b in Ωs × [0, T ].
Find u ∈ Uh such that, for all δu ∈ Uh

0 :

Gs(u; δu) = 0 (5)

This semi-discrete problem can be written in a matrix form using the real valued
vectors u ∈ ❘nd−o−f :

Rs(us;λ) := Msüs + f
int
s (us)− f

ext
s (λ) = 0 (6)

1 We note in passing that the formulation developed herein for fluid-structure interaction
problem would also apply to more elaborate inelastic constitutive models (see [41])
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with M the mass matrix, K the stiffness matrix associated with a potentially
nonlinear problem, and f the projected loading forces. Here the λ represents the
boundary forces computed from the fluid flow problem and imposed on the fluid-
structure interaction interface, and therefore a restriction of t . Each matrix and
vector of this semi-discrete equation are properly defined by assembling locally
computed array on each element with the polynomial basis Ne of P (κe):

Ms,e =

∫

κe

ρsN
T
e Ne

Ks,e(ue)ue =

∫

κe

∇N : σ (ueNe)

fs,e =

∫

κe

NT
e be +

∫

∂κe

NT
e te

(7)

The time integration of the structure problem can be carried out by method
such as standard time stepping schemes [6, 40] or by the so called Finite Element
in time as introduced in [1]. In [19], the use of Finite Element in time for the
structure part in a fluid-structure interaction context is shown to increase the
overall computational with no noticeable advantages. The Generalized HHT-α
method [14] is used herein. The time interval [0, T ] is discretized into a finite
number of time-steps tN such as t0 = 0 and tNmax

= T . In a typical time step
size ∆t = tN+1 − tN , and time derivatives are approximated with:

uN+1 = uN +∆tu̇N +∆t2
[(

1

2
− β

)

üN + βüN+1

]

u̇N+1 = u̇N +∆t [(1− γ)üN + γüN+1]
uN+αf

= (1− αf )uN + αfuN+1

üN+αm
= (1− αm)üN + αmüN+1

(8)

In the semi-discrete form of the solid equation of motion in Eq. (6), the
acceleration ü and the displacement u are evaluated at tN+αf

and tN+αm
For

the elastic linear case, it is shown [14] that there are optimum values for the
parameters β, γ, α and α for a given spectral radius ρ∞ ∈ [0, 1].

β =
(1 + αm − αf )

2

4
, γ =

1

2
+ αm − αf , αf =

1

1 + ρ∞
and αm =

2− ρ∞
1 + ρ∞

(9)

The spectral radius controls the numerical damping of the time integration
scheme. The damping decreases with smaller values of ρ∞ which is maximum
for ρ∞ = 0. For ρ∞ = 1 the method is the classic trapezoidal rule. Other time
integration schemes can be easily derived from this general formulation [36].

3 Description of the flow with free-surface

3.1 Free-surface flow equations

To model free surface flows, a traditional approach is to consider simplified
model such as the Nonlinear Shallow Water Equations first introduced by Saint-
Venant in 1837. Extensive literature on how to solve those equations analytically
or numerically can be found in a number of previous works (e.g. see [71, 70]). If
this approach gives good results for the propagation phase of the wave, in [22]
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(a) Free surface flow (b) Moving grid method
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Figure 2: Techniques to solve a free-surface flow

these models are shown to be unable to represent accurately the impact process
of the wave, as well as its sloshing process (see Fig. 2(a)).

For this reason, another appropriate model has to be chosen near a structure
hit by water. To represent the complex flow an idea could be to consider a
moving fluid domain where the shape of the wave is described by the motion of
the domain. However, the domain motion is so complicated that this strategy
is not possible to use the traditional ALE formulation given above.

Several alternative approaches are thus proposed:

Meshed Lagrangian approach: (see Fig. 2(a)) are used to represent the free
surface fluid flows by using constant re-meshing; therefore, efficient mesh
generators are needed in order to compute the new topology at each it-
eration. For instance, the PFEM method [42] uses one such fast meshing
algorithm and solve this kind of problems.

Meshless Lagrangian approach: (see Fig. 2(b)) such as the SPH has the
advantage not to require the re-meshing step of the previous strategies [7,
15, 60, 74, 75].

Surface tracking methods (ALE): (see Fig. 2(d)) has the advantage that
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the representation of the fluid domain and its free surface is independent
from the representation of the flow field. Hence, the resolution of the
surface and that of the flow field may be chosen independently from one
another. Of course, the level of details should be comparable in order to
resolve the fluid motion properly. However, this freedom is helpful, for
example, in order to improve the accuracy of the evaluation of the surface
tension force (e.g. see [56]).

The relative efficiency of this method will not be discussed herein. As the
result of the initial choice made to couple a FV code, non of them was used.
We use an Arbitrary Lagrangian-Eulerian description of a two-phase flow (tak-
ing into account both water and surrounding air) discretized by Finite Volume
(see [72, 33, 5]). In this Volume-Of-Fluid (V.O.F.) method, an indicator func-
tion (volume fraction, level set or phase-field) is used to represent the interface
(see Fig. 2(e)); the main remaining issue is how to convect the interface without
diffusing, dispersing or wrinkling it [21, 33, 55, 72].

Remark: The incompressible hypothesis can be discussed, especially for
highly aerated waves. For more details on compressible multiphasic simulations,
the reader is invited to consults works of [21].

For complex flows (with jets, cavitation and aeration in the sloshing wave) it
is natural to consider the Navier-Stokes equations for two immiscible and incom-
pressible flows (water and air for instance) occupying transient domains Ωi(t)
so that the whole fluid domain considered Ωf (t) = Ω1(t) ∪ Ω2(t). The inter-
face between the both domains Ω1 and Ω2 is denoted Γ . In space-time domain
Ωf (t) × [0, T ], the Navier-Stokes equations formulated in an ALE framework
apply. For an arbitrary motion of the total fluid domain Ωf described by a
displacement field um, it can be written as:

ρ∂tv + ρ (v − u̇m)∇ · v −∇ · 2µD(v) = −∇p+ f Γ + ρg in Ωf (t)× [0, T ]
∇ · v = 0 in Ωf (t)× [0, T ]

(10)
where p denotes the pressure field, v the velocity. We also introduce g that
depicts the gravity field, f Γ the surface tension forces. It can be expressed as
f Γ = σκδΓ , where σ is the surface tension, κ the curvature of the free-surface
(i.e.interface between Ω1 and Ω2) and δΓ the mass distribution concentrated at
the surface (equivalent to a Dirac distribution). Fluid material properties are
the dynamic viscosity µ and the density ρ. To write a unique formulation in
the whole domain Ωf (t) we express the local material property values as the
function of ι:

ρ = ιρ1 + (1− ι)ρ2 and µ = ιµ1 + (1− ι)µ2 in Ωf (t)× [0, T ] (11)

where the characteristic function or fluid volume fraction ι is defined as:

ι(x , t) =

{

1, for x ∈ Ω1(t)
0, for x ∈ Ω2(t)

(12)

Thus, the fluid volume fraction ι and the mass distribution δΓ are linked by
the relation:

∇ι = δΓn (13)

To close the set of equations we have to write the conservation of ι. When
no reaction between phases occurs, the fluid volume fraction evolves only by
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advection:
∂tι+ (v − u̇m) · ∇ι = 0 (14)

The conservation equation system on the whole domain Ωf in d dimensions
can be written as a function of the 2d + 2 unknowns: um, v , p and ι which
are sought in their respective spaces U , V, P and I that denote the restriction
of Hilbert and Sobolev spaces with suitable boundary condition. Thus, we aim
to find: (um, v , p, ι) ∈ U × V × P × I, such that equations (10) and (11) are
verified.

3.2 Arbitrary moving domain description

A difficulty in fluid-Structure interaction problems pertains to unsteadily mov-
ing domains for the fluid part, as the fluid-structure interface follows the defor-
mations of the structure. Traditional Computational fluid Dynamic programs
solve the fluid equations on a fixed (Eulerian) grid. The classical approach to
overcome this difficulty is to consider the so-called Arbitrary Lagrangian Eu-
lerian (ALE) method where the whole grid is moved inside the fluid domain
following the movement of the boundary [17, 30, 37, 39, 54, 78, 56]. However,
this leads to a new difficulty: knowing the new shape of the boundary, how can
one keep the quality and the validity of the fluid inner mesh? In more mathe-
matical terms, this means building a suitable map for the domain motion given
its interface displacement. The fluid displacement um is arbitrary inside the
domain Ωf , but has to fulfill the condition:

um = um on ∂Ωf (t)× [0, T ] (15)

Thus, the fluid displacement is an arbitrary extension of um|∂Ωf
inside the fluid

domain Ωf :

um = Ext

(

um

∣

∣

∣

∂Ωf

)

(16)

Let us consider a domain T h (Ωf,tN ) which represent the mesh configuration
at a time tN . This domain is moving according to the imposed condition at the
boundaries, in terms of either imposed displacement or velocity. The issue is
to build a new valid mesh T h

(

Ωf,tN+1

)

at tN+1 = tN +∆t knowing the initial
valid mesh T h (Ωf,tN ) and imposed boundary conditions.

It can be proved that the mesh motion problem is formally equivalent to
a solid body under large deformations. The cost to solve the resulting set of
non-linear equations is tremendous and this strategy cannot be applied within
an efficient 3D CFD code. A traditional way to overcome this difficulty is to
consider simplified solid equations for the mesh motion:

Spring analogy aims at linking each point of the mesh by fictitious spring.
In [46], authors show this yields failure modes. The failure modes of this
kind can be eliminated by introducing non-linear and torsional springs.
However, the cost induced by the improvement of this imperfect system
by nature can be deemed as too large.

Pseudo-solid equations can be considered as a simplification of the 3D non-
linear problem to the linear one; the analogy is a mechanical problem with
small deformations.
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Laplacian smoothing operator is different strategy where we consider the
Laplace smoothing equation:

∇ · (γ∇um) = 0 in Ωf (17)

A study of some mesh motion algorithms for the examples presented herein
is given in [47]2. The main conclusion of this work can be summarized as:

Laplace smoothing operator with a non constant diffusion coefficient can
handle large deformation of the mesh while the rotations remains small.

Pseudo-solid formulation is of interest when the motion of the mesh is un-
dergoing large deformation and is mainly governed by rotation.

When the mesh motion are too large (this is not the case herein), strategies
such as Cartesian Cut Cells [12], Immersed Fictitious Elements [78], or even
meshless methods [60] can be used.

3.3 Finite Volume discretization

The continuous equations are transformed into a set of algebraic equations that
can be solved numerically. Indeed, the goal of this work is first to emphasize the
possibility of coupling different codes, with different methods (FEM for solid,
FVM for fluid) and second to follow the trends of the computational scientific
software market. And, as FVM, contrary to FEM, leads to intrinsically conser-
vative methods at the local stage they are often preferred in commercial and
non-commercial softwares (Phoenics, fluent, flow3D, Star-CD, Code Saturne,
OpenFOAM [45] are FVM based, Adina is FEM based). There are a great
number of books of reference on the topic, among them [28, 64].

The FV formulation can be written directly using an integrated form of the
conservation equation written in (10). Another possibility is to consider the
restriction of the solution space of weak form problems. For homogeneity with
the solid method we chose to describe the FV strategy in this framework. The
weak form of the Navier-Stokes equation can be written as follows [35]. Find
(um, ι, v , p) ∈ U×I×V×P, such that, for all (δum, δι, δv , δp) ∈ U0×I0×V0×P0:

Gf :=

∫

Ωf

∇ · (γ∇um)δum +

∫

Ωf

(∂tι+ (v − u̇m)∇ι) δι
∫

Ωf

ρ∂tv · δv +

∫

Ωf

ρ∇ (v − u̇m)⊗ v · δv −

∫

Ωf

∇ · µfD(v) · δv

+

∫

Ωf

p∇ · δv +

∫

Ωf

∇ · vδp+ [B.C. in a weak form]

= 0
(18)

For this method, the whole volume Ωf is divided into a set of of discrete
elements, here called discrete volumes (κf,e)e=1,nel

covering the whole domain
(Ωf = ∪nel

e=1κf,e) without overlapping (∩nel

e=1κf,e = ∅). For a Finite Element
discretization, the solution spaces are restricted to suitable spaces of piecewise

2See also the reference thread in http://www.cfd-online.com/Forums/openfoam-solving/

57916-moving-mesh-problem-openfoam-141-a.html OpenFOAM forum
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polynomial functions over the set of discrete elements. For a Finite Volume dis-
cretization used herein, the test functions are chosen in the space of character-
istic discrete volume functions. For instance, the velocity can be approximated
as:

Vh = V ∩
{

v

∣

∣

∣
v |κ ∈ span(ικ), ∀κ ∈ T

h(Ωf )
}

(19)

where ικ is the characteristic function of the element defined as:

ικ : Ωf −→ ❘

x −→

{

1 if x ∈ κ
0 if x ∈ Ω/κ

(20)

The same kind of restriction holds for the solution spaces of equation (18).
Therefore, the function are piecewise constant by elements, and with the re-
striction of the weak formulation reduces to: find (uh

m, ιh, vh, ph) ∈ Uh ×
Ih × Vh × Vh, such that,for all (δuh

m, διh, δvh, δph) ∈ Uh
0 × I

h
0 × V

h
0 × V

h
0 :

Gf ((u
h
m, ιh, vh, ph); δuh

m, διh, δvh, δph) = 0 . The divergence terms in equa-
tion (18) can be written in terms of flux at the boundary of volume controls
using the Gauss theorem. Hence, the weak formulation can be written as:

0 =
∑

κ

{
∮

∂κ

dΓ · (γ∇um)

}

− [B.C.]

0 =
∑

κ

{
∫

κ

∂tι+

∮

∂κ

dΓ · (v − u̇m) ι

}

− [B.C.]

0 =
∑

κ

{
∫

κ

ρ∂tv +

∮

∂κ

ρ dΓ · (v − u̇m)⊗ v −

∮

∂κ

dΓ · µfD(v) +

∮

∂κ

p dΓ

}

− [B.C.]

0 =
∑

κ

{
∮

∂κ

dΓ · v

}

− [B.C.]

where dΓ is the elementary surface vector. Note that there is no continuity
requirement for the solution (contrary to classical FE), and therefore the ap-
proximate solutions are not properly defined at the interface. Their flux can be
computed without being imposed by the restriction of the solution space to the
FV space. The only difficulty is now to build an accurate representation of the
fluxes at the boundaries from a piecewise constant field.

On each control volume, three levels of numerical approximations are applied
to build the boundary fluxes:

interpolation: to express variable values at the control volume surface in terms
of nodal values (depending on where the variable is stored).

differentiation: to build convective and diffusive fluxes the value of the gradi-
ent of the quantity of interest – or at least its approximation – is required.

integration: to approximate surface and volume integral using quadrature for-
mulæ.

The details of constructing an accurate representation of the derived fields (espe-
cially of the convection terms that require often special cares) will not be exposed
here. Some schemes seek to stabilize the solution at the expense of accuracy,
others, such as the MUSCL (Monotone Upstream-centered Schemes for Conser-
vation Laws) exhibits good stability properties for a high-order scheme [28, 66].
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The fluid mesh motion considers that um is imposed by the motion of the
interface u and can be written in a semi discrete form as:

Rm(um;u) := Kmum −Dmu = 0 (21)

where Dm is a projection/restriction operator and Km governs the extension
of the boundary displacement either by a diffusion process or a pseudo-solid
equation (see Section 3.2 above). The volume fraction ι, the d components of
velocity v and pressure p are coupled through with a set of non-linear equations.
Written in a matrix forms, it gives the following semi-discrete problem:

Rf (ι, vf , pf ;um) :=





Mιι̇+Nι(vf − u̇m)ι
Mf (ι)v̇f +Nf (ι, vf − u̇m)v +Kf (ι)vf + Bfpf − ff (ι)

B
T
f vf



 = 0

(22)
where Mι and Nι are the matrices associated to the advection problem of the
fluid volume fraction, Mf is a positive definite mass matrix, Nf is an unsym-
metrical advection matrix, Kf is the conduction matrix describing the diffusion
terms, and Bf stands for the gradient matrix, whereas ff is the discretized
nodal loads on the flow. This matrix form also takes into account the boundary
conditions; special care has to be taken concerning the discretization of bound-
ary conditions – and especially normal flux – when using the Finite Volume
Method [34].

3.4 Semi-implicit non-linear solver for the fluid problem

One way to solve this problem is to consider a monolithic application. Another
way is to consider a split between the mesh motion, the volume fraction advec-
tion, the momentum and the continuity equations, and to solve it thanks to an
operator split-like procedure often termed as the segregated approach [64]. This
approach is favored for its computational efficiency compared to the monolithic
one. Indeed, even with a simple fixed point iteration strategy its cost is less
important than that of the monolithic approach for large size problems [28]. In
the work presented herein, the later will be used.

Let us note that for a given motion of the fluid domain, the coupling between
the mesh deformation and the Navier-Stokes equation is weak, in the sense that
no variable like velocity v or pressure p influences the fluid domain deformation
under imposed boundary displacements. The coupling between the mesh motion
problem and the fluid momentum equation can therefore be insured explicitly.

The only remaining question is the choice of velocity in the time step ∆t =
tN+1 − tN . As the mesh motion is arbitrary and does not rely on any physical
phenomenon, it is a priori possible to take any velocity evolution on the window
[TN , TN+1] so that the initial mesh deformation is equal to um,N and the final
mesh deformation is equal to um,N+1.

The Geometric Conservation Law demands a numerical scheme to reproduce
exactly and independently from the mesh motion a constant solution. This
condition can be found in the literature for ALE formulation discretized either
by the Finite Volume [17] or the Stabilized Finite Element methods [30]. It is
proven [23] that the velocity of the dynamic mesh needs to be computed for
all first– and second–order time accurate methods like implicit Euler or Crank-
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Nicholson that the mesh motion velocity so that:

u̇m =
um,N+1 − um,N

∆t
(23)

The volume fraction function is supposed to be sharp at the interface be-
tween water and gaze, and therefore, standard FV discretization that can be
strongly diffusive cannot be applied, as they would smear the interface. A way
to guarantee a sharp and bounded solution is to solve it with a numerical scheme
designed for the multi-dimensional advection equation [55]. We will not enter
into the details of such a treatment, but let us note that, in our case, the treat-
ment of the volume fraction require time sub-cycles, as an explicit treatment
termed as MULES (Multidimensional Universal Limiter with Explicit Solution)
is used (see for instance [72, 5]).

For the coupling between the pressure equation and the momentum equi-
librium, strategy based upon ACM (Artificial Compressibility Method) [13],
or pressure correction techniques such as SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) [63, 73] or PISO (Pressure Implicit with Splitting
of Operators) [43, 44] are traditionally used in CFD. They often rely on the use
of suitable relaxation parameters [28] in order to reach convergence for the stiff
coupled problem. In [68], a comparison between ACM and pressure-correction
techniques is given and in [2], a comparison of two pressure-correction algorithms
showed the overall better performances of PISO-like algorithms over SIMPLE
ones.

In this work, PISO-like algorithms are used to solve our CFD problem. The
semi-discrete form of the Navier-Stokes equation is discretized in time using
implicit or explicit integration schemes, such as Euler explicit and implicit, or a
second order Crank-Nicholson scheme. The discretized momentum Eq. (22) is
split in the following way when an implicit integration scheme is used:

Af (vN+1)vN+1 −Hf (vN , vN+1) = −BfpN+1 (24)

where Af stands for time derivative terms in a cell (and is therefore diagonal)
and Hf takes into account all neighboring velocity and source terms in elements.
The incompressibility condition can be re-written in a discrete form using the
previous split as:

B
T
f

1

Af (vN+1)
BfpN+1 − B

T
f

1

Af (vN+1)
Hf (vN , vN+1) = 0 (25)

For the PISO algorithm, the coupling between the incompressibility con-
dition and the momentum equilibrium parts of the Navier-Stokes equation is
assured in an iterative way as detailed in Algorithm 1.

The PISO algorithm is not fully implicit, as corrective term of the velocity
is introduced explicitly. Hence, in the correction step, it is supposed that the
influence of the transported term is negligible compared to the pressure gradient
correction terms. Therefore, even with an implicit time integration scheme, the
stability of the PISO algorithm remains conditional, and when the Courant
Number becomes too large (it means that the transport due to the flow over a
cell is not well captured) the PISO algorithm fails to converge.

Remark: in the algorithm given, the non-orthogonal correctors applied to
build more accurate flux terms when the mesh is not orthogonal grid are not
detailed. For further details, see [28, 79].
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Algorithm 1 Pressure Implicit Splitting of Operators algorithm

1: Given: initial velocity v0 and pressure p0.
2: while T < Tmax do
3: Momentum predictor:

Af (v
(0)
N+1)v

(0)
N+1 −Hf (vN , v

(0)
N+1) = −BfpN

4: for (k) = 0 to (k) < (kmax) do
5: Pressure correction:

B
T
f ·

1

Af (v
(k)
N+1)

B
T
f p

(k)
N+1 = B

T
f ·
Hf (vN , v

(k)
N+1)

Af (v
(k)
N+1)

6: Explicit velocity correction

v
(k+1)
N+1 = v

(k)
N+1 −

1

A(v
(k)
N+1)

Bfp
(k)
N+1

7: end for
8: end while

4 Implicit coupling using algorithm Direct Force-

Motion Transfer and Block-Gauss-Seidel with

Aitken’s relaxation

By enforcing the continuity of primal variables at the interface we can elimi-
nate the energy errors that characterize the explicit interface matching. When
coupling incompressible flow with structure, the implicit interface matching is
required for stability reason, as proved in [48]. This ought to be done by iterat-
ing on the following residual to reduce its value below the chosen tolerance:

rN+1 := us,N+1 − uf,N+1 ≃ 0 ≤ TOL (26)

In this way we obtain an implicit algorithm requiring more than one iteration
to enforce the interface matching condition. The chosen order of iterations,
corresponds to the Block-Gauß-Seidel algorithm for fluid-structure interaction
problem [58]. Let us note that not only the value at synchronization points Tn

or Tn+1, but also the interpolated evolution of variables have to be exchanged
in the entire time-interval t ∈ [Tn, Tn+1] when the time steps are not matching
between fluid and structure sub-problems.

Contrary to explicit algorithms which generate spurious energy at the in-
terface, the present implicit interface matching algorithm enforce the same evo-
lution of the primal variables at the fluid-structure interface. In other words,
an iterative solution for primal (displacements) continuity as well as the dual
(forces) equilibrium equations at the interface is performed by using the Picard
iteration:

u
(k+1)
N+1 = G

(

u
(k)
N+1

)

; G = Ss
−1 ◦ −Sf (27)
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where Sf and Ss are Steklov-Poincaré operators for fluid and structure defined
as define in [18]. These operators can be formulated using transfer operators
and equations (6), (22) and (21):

Ss = T
λ

s ◦ Rs ◦ T
u
s ; Sf = T λ

f ◦ Rf ◦ Rm ◦ T
u
s (28)

where the transfer of structure displacement to fluid-structure interface displace-
ment is T u

s , the transfer of fluid displacement to interface displacement T λ
s , the

transfer of structure stresses to the interface T u
f and the transfer of fluid stresses

to the interface T λ

f .
The Picard iterations will continue until convergence of interface residual is

achieved:
r
(k)
N+1 = u

(k)
s,N+1 − u

(k)
f,N+1 = G

(

u
(k)
N+1

)

− u
(k)
N+1 (29)

Such a Block-Gauß-Seidel algorithm with implicit interface matching, further
denoted as DFTM-BGS, can be presented as a natural generalization of the
explicit algorithms. We can thus write:

Algorithm 2 Direct Force-Motion Transfer Block-Gauß-Seidel

1: Given: initial time T = T0, final time Tmax, window size ∆t, initial interface
displacement u0.

2: while T < Tmax do
3: (k) = 0

4: Predict displacement: u
(0)
N+1 = P(u

(kmax)
N , u̇

(kmax)
N ,u

(kmax)
N−1 , . . . )

5: repeat

6: Perform Picard iteration: G
(

u
(k)
N+1

)

7: Compute residual: r
(k)
N+1 = G

(

u
(k)
N+1

)

− u
(k)
N+1

8: Update interface primal variable: u
(k+1)
N+1 = u

(k)
N+1 + r

(k)
N+1

9: do (k)← (k) + 1

10: until ‖r
(k−1)
N ‖ ≥ TOL

11: N ← N + 1 and T ← T +∆t
12: end while

It is clear that this fixed-point algorithm based on Picard iterations has the
main drawback that the search directions for u and λ variables at the interface
do not exploit any information from the fixed-point function G nor the Steklov-
Poincaré operators Sf and Ss. Therefore, quite a few iterations may be needed
to reach the convergence.

The stability of such a coupling algorithm is studied in [48]. We give a
formal proof of potential numerical instability due to the added-mass effect also
observed in [31, 53]. In order to improve the convergence of the DFMT-BGS
method, we can use a relaxed update:

u
(k+1)
N+1 = u

(k)
N+1 + ω(k) r

(k)
N+1 (30)

Our favorite choice for constructing ω(k) is using a secant methods which can
keep the cost of each iteration as low as possible. The Aitken’s relaxation
strategy has been extensively used in fluid-structure interaction [18, 51, 77],
and shown sufficient performances to be used in the following.
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The use of different different solvers, for the fluid and the structure part, do
not provide in general a matching mesh at the interface. Furthermore, even for
matching meshes, as the geometries of the domains are not the same on both
sides of the interface, an optimal numbering of the nodes can lead to different
orders for the interface nodes. In the examples proposed herein, only this lat-
ter point is of interest. Last but not least, different discretization techniques
(Finite Element versus Finite Volume) or different order p of the polynomials
can be used for constructing solution to fluid-structure interaction problem. In
the domain of FE applied to mechanical engineering, extensive literature can
be found on how to build a consistent interpolation for both subproblems at
the interface [25]. For the fluid-structure interaction problems, an interesting
review can be found in [16]. In our framework, it was decided not to favor any
mesh-based representation of the interface, since, in the most general case, the
fluid problem can also be solved by a meshfree-based method [15]. Namely,
an interpolation strategy relying on radial basis function is here chosen. This
method has already been employed for FSI in [60, 4].

The algorithm presented here is simple to implement. We use for this work
the Communication Template Library (CTL, see [57, 61]) that allows to re-use
existing codes in a generic way, either called as libraries on the same computer,
or as remote executables through network. With the CTL, we are able to couple
existing stand-alone software, in a quite straightforward way, even if they are
programmed in different langages (Fortran for the structure part, C++ for the
fluid part), and to conserve the inner parallelism of each component. For more
details on the implementation, the reader is invited to see [49].

5 Numerical simulations

5.1 Two-dimensional sloshing wave hitting a rigid struc-

ture

To validate the proposed V.O.F. fluid strategy, the classical dam break example
is computed. It is studied from the experimental [10], the analytical [71] as well
as the numerically point of view [72, 22], to describe the collapse of a water
column hitting a rigid structure.

The geometry of the problem is represented in Fig. 3: it mainly consists on a
400mmmm box that contains a water column (initially 146mmmm) collapsing
and hitting a 16mmmm rigid obstacle. The high density fluid representing
water has the following properties: density ρ1 = 1× 103kg.m−3 and kinematics
viscosity ν1 = 1 × 10−6m.s−2. The low density fluid – air – is described with
a density ρ2 = 1kg.m−3 and a kinematics viscosity ν2 = 1.48 × 10−5m.s−2.
The flow in each phase is considered to be Newtonian (no turbulence effect is
taken into account). The surface tension between each phase is 0.07kg.s−2, but
regarding the characteristic size of the problem, the surface tension is of little
influence and can be neglected.

The computation is run with three meshes, with 2268, 9072 and 36288 cells:
around 46 and 50 cells in ex and ey directions for the coarse grid, 92 cells
for the medium grid, and 92 cells are considered fine grid. At t = 0, the initial
conditions are at rest, and the water column starts to collapse. The computation
is run with an time step ∆t = 0.005. The time step can be decreased in order
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Figure 3: Evolution of the volume fraction ι < 0.3 for the two-phase flow (fine
mesh) and comparison with experimental results from [50]
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to maintain the Courant–Friedrichs–Lewy condition under 0.5 during the whole
simulation. For the coarsest grid considered, no decreasing of the time step is
required whereas it is required for the finest grid after the water column hits
the rigid obstacle.

In Fig. 3, the evolution of the flow for the finest grid, and a comparison with
experimental results [50] is given. We give here only this qualitative compar-
ison. To get more quantitative comparison, one can see the same dam-break
problem without obstacle that as been largely used to validate the VOF strategy
(see e.g. [72, 22]). As we are interested in fluid-structure interaction, the dam-
break with an obstacle seems here more relevant with the examples proposed in
the following sections.
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Figure 4: Horizontal and vertical forces acting upon the obstacle for coarse
(2268 cells) and fine (9072 cells) grids

In Fig. 4 the forces acting upon the obstacle are also represented. Before
the water column hit the structure, the three meshes give roughly the same
response. After that, the fine mesh is able to capture the separation of the
water phase in many drops and to represent more accurately their separated
impact on the right side of the obstacle. It explains the difference observed
for t ≥ 0.5. The use of a turbulence model should be here probably required
to obtain more physical results, but at this is not the topic of this paper (e.g.
see [52, 67]), we will use only laminar models with the coarse and medium mesh
densities for the fluid-structure interaction examples provided in the following.

5.2 Two-dimensional sloshing wave hitting a flexible struc-

ture

The problem solved herein is a modification of the dam-break problem presented
in Sec. 5.1. At initial time t = 0s, the same water column starts to fall under the
gravity loading. Instead of hitting a rigid structure, its geometry is modified in
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order to get a more slender obstacle (Fig. 5). Furthermore, the material prop-
erties of the obstacle are modified in order to obtain a flexible elastic structure.
This problem was studied experimentally and numerically [76, 3].
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Figure 5: Dam break interacting with an obstacle: geometry (given in mm) and
boundary conditions

All boundaries a non-slip boundary condition is applied, except for the upper
boundary z = H where the tank is open and a total pressure condition is used:

p+
1

2
ρ‖v‖2 = patm (31)

with patm = 0.
The material properties are imposed as follows: the density and the kine-

matic viscosity are ρf,1 = 1× 103kg.m−3 and νf,1 = 1× 105m.s−1 for the high
density fluid, whereas ρf,2 = 1kg.m−3 and νf,2 = 1× 106m.s−1 are considered
for the low density fluid domain. Due to the scale of the simulation there is no
need to consider surface tension.

Mesh motions based on smoothing operator like the Laplacian equation fails
for the used meshes since the points around the obstacle have difficulties to
follow the large displacement and rotations of the mesh around the structure.
For this reason, the mesh motion problem is solved by using a pseudo-elastic
material model where the rigidity is a quadratic inverse function of the distance
to the interface between solid and fluid.

The fluid problem is discretized with Finite Volume Method. The results are
presented for two meshes with respectively 3340 and 13760 cells. The fluid is
handled by second order space discretization and a Van Leer limiter is used for
the advected terms. The time integration scheme employed herein is implicit
Euler. Small time steps are required by the explicit nature of the coupling
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between the phase function indicator problem, the momentum prediction and
the pressure correction step.

For structure mechanics problem, it is proposed to use two dimensional ele-
ments with quadratic shape functions. Each element therefore contains 9 nodes.
For the coarse grid, 51 nodes are considered while 165 nodes are used to dis-
cretize the fine grid. The total number of d-o-f given in Tab. 1. The model can
handle finite deformations. The material properties used for the solid are: a neo-
Hookean elastic material with Young modulus Es = 1 × 106Pa and Poisson’s
ratio νs = 0. The chosen value of mass density ρs = 2500kg ·m−3.

The time integration is handled by a Generalized-α scheme with:

ρ∞ =
1

2
;β =

4

9
; γ =

5

3
and α =

2

3
(32)

At each iteration, the linear system is solved by a direct solver for real value
asymmetric matrices.

fluid solid number of
Discretization cells d-o-f nodes d-o-f time steps

Coarse 3440 17.2× 103 51 102 1× 104

Fine 13760 68.8× 103 165 330 5× 104

Table 1: Number of d-o-f for coarse and fine discretization of the two-
dimensional dam-break problem

The computation is carried out run with a time step of 1 × 10−4 for the
coarse and 2× 10−5 for the fine discretization. The coupling scheme used here
is DFMT-BGS with Aitken’s relaxation, with the initial parameter value of
ω = 0.25. The predictor is of order 1, since computations with second order
predictor fail for the finnest grid. The absolute tolerance considered is:

‖r
(k)
N ‖ ≤ 1× 10−6

The total number of iteration required to reach the convergence criteria at
each time step is given in Fig. 6. Note that no iteration is required before
the water hits the structure since the effect of air flow can almost be deemed
negligible for this structure. Subsequently, the number of iteration depends
on the discretization density. Namely, the finest scale is able to represent fine
water sloshing after the breaking of the dam, that will increase the number of
iterations needed to ensure the convergence of the implicit coupling. This large
number of iteration make the computation costly, and for the finest grid, the
total time required to perform the whole coupled simulation on a single 3.0GHz
Intel processor is 143× 103s.

In Fig. 8 we represent the domain occuped by high density fluid as well as
the stream-lines in the high and low density fluid domains (compare again the
results in Fig. 3 for rigid obstacle). For first 0.1s of the simulations, the water
column is falling under the gravity loading. There is no effect whatsoever on
the structure until the high density fluid reaches it. The maximum amplitude
of the motion is obtained at t = 0.25s, before the solid comes back to its initial
position due to flow friction.

After one second of simulation, the fluid is not entirely at rest, but its main
effects on the structure are mostly captured. Moreover, we are able to catch the
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converge for the two-dimensionnal dam-break example
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Figure 7: Obstacle extremity displacement in ex direction for different meshes
and comparison with results from literature

main impact with a good accuracy with both the coarse and the fine mesh. Our
results are in accordance with the one obtained using a monolithic stabilized-
FEM strategy described in [76]. In [3], a tight coupling strategy between a FV
and a FEM solver is used, that probably explained the differences observed.
After, the impact high density fluid is highly fragmented (see Fig. 8 for time
greater than 0.3s), and the results mostly depend on the ability of the chosen
fluid mesh to represent these fine effects, as well as the use of turbulence fluid
models not explored herein.

5.3 Three-dimensional sloshing wave impacting a flexible

structure

The problem solved in this example is a modified three-dimensional representa-
tion of dam-breaking event that brings about a sloshing wave impact on a flexible
structure presented in Fig. 9. At initial time t = 0s, a three-dimensional water
column starts falling down under the gravity loading and eventually hits the ob-
stacle placed in the way. The flexible obstacle is a slender plate-like body made
of elastic material that can undergo large deformation. The chosen dimension
of the problem, as well as the boundary conditions are given in Fig. 9.

Let us note that we propose to use open boundary conditions far from the
obstacle in order to avoid the water bounces-back and hits again the structure
after breaking off the walls. For that reason, only the left and bottom planes of
the fluid domain are defined as non-slipping walls, while the others are defined
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Figure 8: Bi-dimensional dam breaking problem. Evolution of the free surface,
structure motion and streamlines for water and air.
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with boundary condition of atmospheric pressure.
The material properties are chosen as follows: the density and the kinematic

viscosity are ρf,1 = 1 × 103kg.m−3 and νf,1 = 1 × 105m.s−1 for the high
density fluid (water in the reservoir), versus ρf,2 = 1 × 103kg.m−3 and νf,2 =
1×106m.s−1 for the low density fluid (air in the remaining part of the domain).
The mesh motion problem is solved by using a Laplacian smoothing material
where the diffusion coefficient is a quadratic inverse function of the distance to
the interface between solid and fluid.

The results are computed for two meshes with the chosen discretization and
the number of cells given in Tab. 2. For the finest grid, around 64, 60 and
40 cells are used in ex, ey and ez direction. The mesh is refined gradually
refined around the structure, and initially the cell dimensions are between 8.9×
10−8 and 3.2 × 10−5. For this finest grid, the maximum skewness of the mesh
observed is 2.947, that does not generate too large errors. The fluid is handled
by second order space discretization and a Van Leer limiter is used for the
advection terms. The time integration scheme employed in this computation
is implicit Euler. For such a scale of modeling it is not required to consider
surface tension between the two fluids. For this problem the fluid computation
is parallelized, but reduction of the CPU time is obtained by using a Generalized
Algebraic-MultiGrid (GAMG) linear solver.

Note that small time steps are required for the explicit solution of the phase
function indicator equation, as well as the half-implicit nature of the coupling
between the momentum predictor and the pressure corrector.

For the structure part, we propose here to use three-dimensional elements
with quadratic shape functions, where each element has 27 nodes. The material
properties used for the solid are: a neo-Hookean elastic material with Young’s
modulus Es = 1×106Pa and Poisson’s ratio νs = 0 and a density ρs = 2500kg ·
m−3, which can represent finite deformation. The time integration is carried
out by a Generalized-α scheme with the same parameters as the one used for
the 2D case.

fluid solid number of
Discretization cells d-o-f nodes d-o-f time steps

Coarse 13× 103 63× 103 363 1.1× 103 1× 105

Fine 104× 103 520× 103 2205 6.6× 103 1× 105

Table 2: Number of d-o-f for coarse and fine discretization of the three-
dimensional dam-breaking problem

The computation of the coupled problem (with total number of d-o-f given
in Tab. 2), is carried out by an implicit iterative scheme. The results of fluid and
solid computations are matched for a time step of 1 × 10−4 for the coarse and
2 × 10−5 for the fine discretization. The coupling scheme used is DFMT-BGS
with Aitken’s relaxation. The initial parameter is ω = 0.25 and the predictor is
of order 1. The absolute tolerance considered is:

‖r
(k)
N ‖ ≤ 1× 10−6 (33)

The number of iterations required to reach the convergence criteria is given
in Fig. 10. Note that there is no iteration required before the water hits the
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Figure 10: Number of iterations in order to make the DFMT-BGS algorithm
converge for the three-dimensional dam-breaking problem

structure since the effect of air flow can almost be deemed negligible with re-
spect to the structure. Subsequently, the number of iterations depends on the
discretization density. In reaching the opposite wall, the water does not rebound
on the wall but simply flows away. For the finest grid, the total time required
to perform the whole coupled simulation on a single 3.0GHz Intel processor is
279× 103s.

In Fig. 12, the high density fluid domain is represented, as well as some
part of the fluid mesh and the structure displacement. The first 0.1s of the
simulations, the water column falls under the gravity loading. There is no effect
whatsoever on the structure until the high density flow reaches its bottom. The
maximum amplitude of the motion is obtained at t = 0.25s, before the solid
comes back to its initial position and oscillates after the shock.
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Figure 11: Three-dimensional dam break example: obstacle displacement in ex

direction of center point of the top face (40; 6; 80)

In Fig. 11 the motion of the extremity of the solid obstacle is plotted. Con-
trary of the two-dimensional example, small drops of high density fluid are not
interacting with the obstacle after the main shock. Therefore, the motion of the
flexible structure remains fairly smoothed and it is rather well described with
the coarsest grid.

Conclusion

The presented work deals with a partitioned strategy for complex fluid-structure
interaction problems in presence of free-surface flows. The proposed coupling
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Figure 12: Tri-dimensional dam break problem. Evolution of the free surface
and motion of the structure.
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strategy is shown to provide reliable (convergent) results with implicit scheme
computation for both structure and fluid component. The Direct Force-Motion
Transfers algorithm is used to pass the pertinent information between structure
and fluid motion, featuring also the implicit solution strategy based upon the
fixed-point iterations with a dynamic relaxation parameter used to accelerate
convergence [48].

Most importantly, the proposed solution method allows to perform coupled
simulations and obtain reliable solution to complex fluid-structure interaction
by using the existing codes, that were initially developed to support either fluid
or structure motion computation. This is achieved thanks to the use of the
component technology [49, 61] providing the coupling between existing software
products. Therefore, the proposed solution method for fluid-structure inter-
action can utilize very different discretization strategies to obtain the optimal
accuracy; The case in point concerns FE for the structure and FV for the fluid.
The use of these popular methods for the fluid and solid parts allows to benefit
from the advanced features of the two families of methods, each developed by the
experts from the corresponding domain. Accordingly, on the fluid side, it is pos-
sible to use a very efficient semi-implicit solver for incompressible flow (PISO),
inverse techniques (Algebraic Multigrid) or advanced models for free-surface
flows. A very good performance of the proposed technology for fluid-structure
interaction is illustrated with 2D and 3D models for dam breaking examples,
which also involve flexible obstacles.
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