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TIGHT CONDITIONS FOR CONSISTENCY OF VARIABLE SELECTION IN
THE CONTEXT OF HIGH DIMENSIONALITY

BY LAETITIA COMMINGES AND ARNAK S. DALALYAN*

Université Paris Est/ ENPC and ENSAE-CREST

We address the issue of variable selection in the regression model with
very high ambient dimension, i.e, when the number of variables is very
large. The main focus is on the situation where the number of relevant vari-
ables, called intrinsic dimension and denoted by d*, is much smaller than
the ambient dimension d. Without assuming any parametric form of the
underlying regression function, we get tight conditions making it possible
to consistently estimate the set of relevant variables. These conditions re-
late the intrinsic dimension to the ambient dimension and to the sample
size. The procedure that is provably consistent under these tight condi-
tions is based on comparing quadratic functionals of the empirical Fourier
coefficients with appropriately chosen threshold values.

The asymptotic analysis reveals the presence of two quite different re-
gimes. The first regime is when d* is fixed. In this case the situation in non-
parametric regression is the same as in linear regression, i.e., consistent
variable selection is possible if and only if logd is small compared to the
sample size n. The picture is different in the second regime, d* — oo as
n — oo, where we prove that consistent variable selection in nonparamet-
ric set-up is possible only if d* +loglogd is small compared to logn. We
apply these results to derive minimax separation rates for the problem of
variable selection.

1. Introduction. Real-world data such as those obtained from neuroscience,
chemometrics, data mining, or sensor-rich environments are often extremely
high-dimensional, severely underconstrained (few data samples compared to
the dimensionality of the data), and interspersed with a large number of irrel-
evant or redundant features. Furthermore, in most situations the data is con-
taminated by noise making it even more difficult to retrieve useful information
from the data. Relevant variable selection is a compelling approach for address-
ing statistical issues in the scenario of high-dimensional and noisy data with
small sample size. Starting from Mallows [29], Akaike [1], Schwarz [36] who in-
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troduced respectively the famous criteria C),, AIC and BIC, the problem of vari-
able selection was extensively studied in the statistical and machine learning
literature both from the theoretical and algorithmic viewpoints. It appears, how-
ever, that the theoretical limits of performing variable selection in the context of
nonparametric regression are still poorly understood, especially when the num-
ber of variables, denoted by d and referred to as ambient dimension, is much
larger than the sample size n. The purpose of the present work is to explore this
setting under the assumption that the number of relevant variables, hereafter
called intrinsic dimension and denoted by d*, may grow with the sample size
but remains much smaller than d.

In the important particular case of linear regression, the latter scenario was
the subject of a number of recent studies. Many of them rely on ¢;-norm penal-
ization [38, 46, 31] and constitute an attractive alternative to iterative variable
selection procedures [2, 45] and to marginal regression or correlation screening
[42, 18]. Promising results for feature selection are also obtained by conformal
prediction [20], (minimax) concave penalties [16, 17, 44], Bayesian approach [37]
and higher criticism [15]. Extensions to other settings including logistic regres-
sion, generalized linear model and Ising model were carried out in [8, 34, 18],
respectively. Variable selection in the context of groups of variables with disjoint
or overlapping groups was studied by [43, 24, 28, 32, 21]. Hierarchical procedures
for selection of relevant variables were proposed by [3, 5, 47].

It is now well understood that in the Gaussian sequence model and in the
high-dimensional linear regression with a Gram matrix satisfying some vari-
ant of irrepresentable condition, consistent estimation of the pattern of rele-
vant variables—also called the sparsity pattern—is possible under the condi-
tion d*log(d/d*) = o(n) as n — oo [41]. Furthermore, it is well known that if
(d*log(d/d*))/n remains bounded from below by some positive constant when
n — oo, then it is impossible to consistently recover the sparsity pattern [40].
Thus, a tight condition exists that describes in an exhaustive manner the inter-
play between the quantities d*, d and n that guarantees the existence of consis-
tent estimators. The situation is very different in the case of non-linear regres-
sion, since, to our knowledge, there is no result providing tight conditions for
consistent estimation of the sparsity pattern.

The papers [26] and [4], closely related to the present work, considered the
problem of variable selection in nonparametric Gaussian regression model. They
proved the consistency of the proposed procedures under some assumptions
that—in the light of the present work—turn out to be suboptimal. More pre-
cisely, Lafferty and Wasserman [26] assumed the unknown regression function
to be four times continuously differentiable with bounded derivatives. The algo-
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rithm they proposed, termed Rodeo, is a greedy procedure performing simulta-
neously local bandwidth choice and variable selection. Rodeo is shown to con-
verge when the ambient dimension d is O(log n/loglog n) while the intrinsic di-
mension d* does not increase with 7. On the other hand, Bertin and Lecué [4]
proposed a procedure based on the ¢, -penalization of local polynomial estima-
tors and proved its consistency when d* = O(1) but d is allowed to be as large as
logn, up to a constant. They also have a weaker assumption on the regression
function merely assumed to belong to the Holder class with smoothness 8 > 1.
To complete the picture, let us mention that estimation and hypotheses testing
problems for high-dimensional nonparametric regression under sparse additive
modeling were recently addressed in [25, 33, 19].

This brief review of the literature reveals that there is an important gap in
consistency conditions for the linear regression and for the non-linear one. For
instance, if the intrinsic dimension d* is fixed, then the condition guaranteeing
consistent estimation of the sparsity patternis (logd)/n — 0 in linear regression
whereas it is d = O(log n) in the nonparametric case. While it is undeniable that
the nonparametric regression is much more complex than the linear one, it is
however not easy to find a justification to such an important gap between two
conditions. The situation is even worse in the case where d* — oo. In fact, for
the linear model with at most polynomially increasing ambient dimension d =
O(n*), it is possible to estimate the sparsity pattern for intrinsic dimensions d*
as large as n'=¢, for some € > 0. In other words, the sparsity index can be almost
on the same order as the sample size. In contrast, in nonparametric regression,
there is no procedure thatis proved to converge to the true sparsity pattern when
both n and d* tend to infinity, even if d* grows extremely slowly.

In the present work, we fill this gap by introducing a simple variable selection
procedure that selects the relevant variables by comparing some quadratic func-
tionals of empirical Fourier coefficients to prescribed significance levels. Con-
sistency of this procedure is established under some conditions on the triplet
(d*,d, n) and the tightness of these conditions is proved. The main take-away
messages deduced from our results are the following:

e When the number of relevant variables d* is fixed and the sample size n
tends to infinity, there exist positive real numbers ¢, and c* such that (a) if
(logd)/n < c, the estimator proposed in Section 3 is consistent and (b) no
estimator of the sparsity pattern may be consistent if (logd)/n > c*.

¢ When the number of relevant variables d* tends to infinity with n — oo,
then there exist real numbers ¢, and ¢;, i = 1,2 such that ¢, >0, ¢; >0 and
(a) if ¢, d*+loglog(d /d*)—log n < ¢, the estimator proposed in Section 3 is
consistent and (b) no estimator of the sparsity pattern may be consistent
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if ¢;d* +loglog(d /d*)—logn > ¢,.

o In particular, if d grows not faster than a polynomial in r, then there exist
positive real numbers ¢y and c? such that (a) if d* < cglogn the estimator
proposed in Section 3 is consistent and (b) no estimator of the sparsity
pattern may be consistent if d* > c%logn.

In the regime of a growing intrinsic dimension d* — oo and a moderately large
ambient dimension d = O(n¢), for some C > 0, we make a concentrated effort
to get the constant ¢y as close as possible to the constant ¢?. This goal is reached
for the model of Gaussian white noise and, very surprisingly, it required from us
to apply some tools from complex analysis, such as the Jacobi -function and
the saddle point method, in order to evaluate the number of lattice points lying
in a ball of an Euclidean space with increasing dimension.

The rest of the paper is organized as follows. The notation and assumptions
necessary for stating our main results are presented in Section 2. In Section 3, an
estimator of the set of relevant variables is introduced and its consistency is es-
tablished, in the case where the data come from the Gaussian white noise model.
The main condition required in the consistency result involves the number of
lattice points in a ball of a high-dimensional Euclidean space. An asymptotic
equivalent for this number is presented in Section 4. Results on impossibility
of consistent estimation of the sparsity pattern are derived in Section 5. Sec-
tion 6 is devoted to exploring adaptation to the unknown parameters (smooth-
ness and degree of significance) and recovering minimax rates of separation.
Then, in Section 7, we show that some of our results can be extended to the
model of nonparametric regression. The relations between consistency and in-
consistency results are discussed in Section 8. The technical parts of the proofs
are postponed to the Appendix.

2. The problem formulation and the assumptions. We are interested in
the variable selection task (also known as model selection, feature selection,
sparsity pattern estimation) in the context of high-dimensional non-linear re-
gression. Let f : [0,1]4 — R denote the unknown regression function. We assume
that the number of variables d is very large, possibly much larger than the sam-
ple size n, but only a small number of these variables contribute to the fluctua-
tions of the regression function f.

To be more precise, we assume that for some small subset J of the index set
{1,...,d} satisfying Card(J) < d*, there is a function f : R¢ardl) — R such that

fx)="f(x)), Vx eR4,

where x; stands for the subvector of x obtained by removing from x all the co-
ordinates with indices lying outside J. In what follows, we allow d and d* to
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depend on n but we will not always indicate this dependence in notation. Note
also that the genuine intrinsic dimension is Card(J); d* is merely a known upper
bound on the intrinsic dimension. In what follows, we use the standard notation
for the vector and sequence norms:
lello=Y_1(x; #0),  lI%IZ=_|x;", Vpell,00),  IIxlloo=suplx;l,
J J
for every x e R? or x e RN,

Let us stress right away that the primary aim of this work is to understand
when it is possible to estimate the sparsity pattern J (with theoretical guarantees
on the convergence of the estimator) and when it is impossible. The estimator
that we will define in next sections is intended to show the possibility of consis-
tent estimation, rather than to provide a practical procedure for recovering the
sparsity pattern. Therefore, the estimator will be allowed to depend on different
constants appearing in conditions imposed on the regression function f and on
some characteristics of the noise.

To make the consistent estimation of the set J realizable, we impose some
smoothness and identifiability assumptions on f. In order to describe the smooth-
ness assumption imposed on f, let us introduce the trigonometric Fourier basis:
wo=1and

{«/Ecos(Zn k-x), ke(zd),,
Pr(x)= m

V2sin@rk-x), —ke(zZ4),,

where (Z4), denotes the set of all k € Z4\ {0} such that the first nonzero element
of k is positive and k-x stands for the usual inner product in R4. In what follows,
we use the notation (-,-) for designing the scalar product in L2([0,1]%;R), that is
(h,h) = f[O,l]d h(x)h(x)dx for every h,h € 12([0,1]1%;R). Using this orthonormal
Fourier basis, we define

ZL—{f > e <L Vje{l,...,d}}.

To ease notation, we set 0y [f] = (f, o) for all k € Z4. In addition to the smooth-
ness, we need also to require that the relevant variables are sufficiently relevant
for making their identification possible. This is done by means of the following
condition.

[C1(x,L)] The regression function f belongs to X;. Furthermore,_for some sub-
set JC{l,...,d }_of cardinality < d*, there exists a function f : R¢rdl/) — R
such that f(x) =f(x), Vx € R? and it holds that

Qilfl= D Olf*>x, VjeJ. (2)
Kk #0
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One easily checks that Q;[f] = 0 for every j that does not lie in the sparsity pat-
tern. This provides a characterization of the sparsity pattern as the set of indices
of nonzero coefficients of the vector Q[f] = (Q;[f], ..., Qa[f]).

Prior to describing the procedures for estimating J, let us comment Con-
dition [C1]. It is important to note that the identifiability assumption (2) can
be rewritten as f 0,174 (f(x)— f 01 f(x)dxj)zdx > k and, therefore, is not intrin-
sically related to the basis we have chosen. In the case of continuously differ-
entiable and 1-periodic function f, the smoothness assumption f € 3; as well
can be rewritten without using the trigonometric basis, since ) ; _,q k]? Ok [f12 =

(2m)—2 f[o 1 [0;f(x)]? dx. Thus, condition [C1] is essentially a constraint on the

function f itself and not on its representation in the specific basis of trigonomet-
ric functions.

The results of this work can be extended with minor modifications to other
types of smoothness conditions imposed on f, such as Holder continuity or Besov-
regularity. In these cases the trigonometric basis (1) should be replaced by a
basis adapted to the smoothness condition (spline, wavelet, etc.). Furthermore,
even in the case of Sobolev smoothness, one can replace the set >; correspond-
ing to smoothness order 1 by any Sobolev ellipsoid of smoothness 8 > 0, see
for instance [10] where the case 8 = 2 is explored. Roughly speaking, the role
of the smoothness assumption is to reduce the statistical model with infinite-
dimensional parameter f to a finite-dimensional model having good approxi-
mation properties. Any value of smoothness order > 0 leads to this reduction.
The value 8 =1 is chosen for simplicity of exposition only.

3. Idealized setup: Gaussian white noise model. To convey the main ideas
without taking care of some technical details, we start by focusing our atten-
tion on the Gaussian white noise model, that was proved to be asymptotically
equivalent to the model of regression [6, 35], as well as to other nonparametric
models [7, 13]. Thus, we assume that the available data consists of Gaussian pro-
cess {Y(¢): ¢ € L2([0,1]4;R)} such that

1

E¢[Y(9)] :f f(x)p(x)dx, Cov(Y(9), Y(¢")=— P(x)p’'(x)dx.
[0,1)¢ " Jio, e

It is well-known that these two properties uniquely characterize the probability

distribution of a Gaussian process. An alternative representation of Y is
ay(x)=fx)dx+n""?dw(x), x€[0,1]%,

where W(x) is a d-parameter Brownian sheet. Note that minimax estimation
and detection of the function f in this set-up (but without sparsity assumption)
was studied by [23].
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3.1. Estimation of ] by multiple hypotheses testing. We intend to tackle the
variable selection problem by multiple hypotheses testing; each hypothesis con-
cerns a group of the Fourier coefficients of the observed signal and suggests that
all the elements within the group are zero. The rationale behind this approach is
the following simple observation: since the trigonometric basis is orthonormal
and contains the constant function,

This observation entails that if the intrinsic dimension |J| is small as compared
to d, then the sequence of Fourier coefficients is sparse. Furthermore, as ex-
plained below, there is a sort of group sparsity with overlapping groups.

For every { € {1,...,d*}, we denote by Pzd the set of all subsets I of {1,...,d}
having exactly ¢ elements: P;’ ={Ic{l,...,d} : Card(I) = (}. For every multi-
index k € Z4, we denote by supp(k) the set of indices corresponding to nonzero
entries of k. To define the blocks of coefficients 6 that will be tested for signifi-
cance, we introduce the following notation: for every I C {1,...,d} and for every
Jj €1, we set

ViTf = (ek [f]: j € supp(k) 1).

It follows from (3) that the characterization
i#] <= max|V/[f],=0, @

holds true for every p € [0, +oc]. Furthermore, again in view of (3), the maximum
over I of the norms || VI] [f] Hp is attained when I = J and is equal to the maximum
over all subsets I such that Card(I) < d*. Summarizing these arguments, we can
formulate the problem of variable selection as a problem of testing d null hy-
potheses

Hoj: ||V [fl|, =0 VIc{l,...,d} such that Card() < d*. ()

If the hypothesis Hy; is rejected, then the jth covariate is declared as relevant.
Note that by virtue of assumption [C1], the alternatives can be written as

Hij: HVIj [f]”i >k forsome I C{l,...,d}such that Card(I) < d*. 6)

Our estimator is based on this characterization of the sparsity pattern. If we de-
note by yi the observable random variable Y (¢ ), we have

Vi = O[fl+n"12 &y, O =(f,ox), kez4, @)

where {&g; k € Z4} form a countable family of independent Gaussian random
variables with zero mean and variance equal to one. According to this property,
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Yk is a good estimate of 0y [f]: it is unbiased and with a mean squared error equal
to 1/n. Using the plug-in argument, this suggests to estimate V] by V] (k-
j € supp(k) C I) and the norm of VI] by the norm of VI] . However, since this
amounts to estimating an infinite-dimensional vector, the error of estimation
will be infinitely large. To cope with this issue, we restrict the set of indices for
which 0 is estimated by yj to a finite set, outside of which 8y will be merely
estimated by 0. Such a restriction is justified by the fact that f is assumed to
be smooth: Fourier coefficients corresponding to very high frequencies are very
small.

Let us fix an integer m > 0, the cut-off level, and denote, for j e I c {1,...,d},
S{n,l = {k ez : ||k|l,<m and {j} c supp(k)cC I},

Since the alternatives H;; are concerned with the 2-norm, we build our test
statistic on an estimate of the norm || VI] [f]|l>. To this end, we introduce

i 1
i _ 2
Q.1 _Zkes{n, (yk B Z)’

which is an unbiased estimator of Q! , = > s Oi. Note that when m — oo,
’ m,I

the quantity Q{n’ ; approaches || VIj [f] ||§. It is clear that larger values of m lead to
a smaller bias while the variance get increased. Moreover, the variance of @Jm I

is proportional to the cardinality of the set an, ;- The latter is an increasing func-
tion of Card(I). Therefore, if we aim at getting comparable estimation accuracies
when estimating the functionals || VI] [f] ||:3 by @]m ; for various I’s, it is reasonable
to make the cut-off level m vary with the cardinality of I.

Thus, we consider a multivariate cut-off m = (my,...,mg+) € N4*. For a subset
I of cardinality ¢ < d*, we test significance of the vector VI] [f] by comparing its
estimate @]W ; with a prescribed threshold A,. This leads us to define an estima-
tor of the set J by
Jatm,2)={jef1,...a} : max 27 max @), ,=1}.
t=ar Iepf
where m = (my,...,mg+«) € N@" and A = (A4,...,A4+) € Rd* are two vectors of
tuning parameters As already mentioned, the role of m is to ensure that the
truncated sums Q ; do not deviate too much from the complete sums Q]
Quantitatively speaklng, for a given 7 > 0, we would like to choose m;’s so that
Q{ns, ;2 KT /7 +1, where s = Card(J). This guarantee can be achieved due to the
smoothness assumption. Indeed, as proved in (26) (cf. Appendix B), it holds that
j

_2 .
mSJZK—mS Ls, Viel].
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Therefore, choosing my = ((L(1 + 7)/x) 1/2, for every ¢ = 1,...,d*, entails the
inequality Q{ns, ; = K7/7 + 1, which indicates that the relevance of variables is
not affected too much by the truncation.

Pushing further the analogy with the hypotheses testing, we define Type I er-
ror of an estimator J, of J as the one of having J,, ¢ J, i.e. classifying some
irrelevant variables as relevant. The Type II error is then that of having J ¢ f,
which amounts to classifying some relevant variables as irrelevant. As in test-
ing problem, handling the Type I error is easier since the distribution of the test
statistic is independent of f. In fact, this is the max of a finite family of random
variables drawn from translated and scaled y?-distributions. Using the Bonfer-
roni adjustment, leads to the following control of the first kind error.

PrROPOSITION 1. Let us denote by N({,y) the cardinality of the set {k € 7! :
k|5 <yl & k1 # 0}. If for some A> 1 and for every{ =1,...,d*,

> 2\/AN(€, ml?/f)d*log(Zed/d*)—k2Ad*log(2ed/d*)

¢ , (8)

n
then the Type I error P(J,(m,A) ¢ J) is upper-bounded by (2ed /d*)~4" A=V, and
therefore tends to 0 as d — +00.

This proposition shows that the Type I error of a variable selection procedure
may be made small by choosing a sufficiently high threshold. By doing this, we
run the risk to reject Hy; very often and to drastically underestimate the set of
relevant variables. The next result establishes a necessary condition, which will
be shown to be tight, ensuring that such an underestimation does not occur.

THEOREM 1. Let condition [C1(x, L)] be satisfied with some known constants

K >0 and L < oo and let s = Card(J). For some real numberst >0 and A > 1, set

my = ((L(1+7)/x) Y2 ¢ =1,...,d*, and define A; to be equal to the right-hand
side of (8). If the condition

42, <k7/(1+7) 9

is fulfilled, then J,(m, A) is consistent and satisfies the inequalities P(J,(m, 1) 7
J) <2(2ed/d*) 4=V and P(J,(m,A) # J) <3(2ed/d*)~4"(A-1),

Condition (9) ensuring the consistency of the variable selection procedure J,,
admits a very natural interpretation: It is possible to detect relevant variables if
the degree of relevance « is larger than a multiple of the threshold A, the latter
being chosen according to the noise level.
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A first observation is that this theorem provides interesting insight to the pos-
sibility of consistent recovery of the sparsity pattern J in the context of fixed in-
trinsic dimension. In fact, when d* remains bounded from above when n — oo
and d — oo, then we get that P(fl(m, A)=J) —n,d—00 1 provided that

logd < Const- n. (10)

Although we did not find (exactly) this result in the statistical literature on vari-
able selection, it can be checked that (10) is a necessary and sufficient condition
for recovering the sparsity pattern J in linear regression with fixed sparsity d*
and growing dimension d and sample size n. Thus, in the regime of fixed or
bounded d*, the sparsity pattern estimation in nonparametric regression is not
more difficult than in the parametric linear regression, as far as only the consis-
tency of estimation is considered and the precise value of the constant in (10) is
neglected. Furthermore, there is a simple estimator ]f,l) of J (cf. Eq. (3) in [10]),
which is provably consistent under condition (10). This estimator can be seen as
a procedure of testing hypotheses Hy; of form (5) with p = oo and, therefore, it
does not really exploit the structure of the Fourier coefficients of the regression
function. To some extent, this is the reason why in the regime of growing intrin-
sic dimension d* — oo, the estimator f(nl) proposed by [10] is no longer optimal.

In fact, when d* — oo, the term N(s, m? /s) present in (9) tends to infinity as
well. Furthermore, as we show in Section 4, this convergence takes place at an
exponential rate in d*. Therefore, in this asymptotic set-up it is crucial to have
the right order of N(s, mf /s) in the condition that ensures the consistency. As
shown in Section 5, this is the case for condition (9).

REMARK 1. An apparent drawback of the estimator J, is the large dimen-
sionality of tuning parameters involved in J,,. However, Theorem 1 reveals that
for achieving good selection power, it is sufficient to select the 2d*-dimensional
tuning parameter (m, A) on a one-dimensional curve parameterized by # = L(1+
7)/x. Indeed, once the value of 1 is given, Thm. 1 advocates for choosing

2y/AN(¢,9)d* log(2ed /d*)+2Ad*log(2ed /d¥) a
n

me = (Zl‘/‘)l/2 and Ay=

1y

for every £ = 1,...,d*. As discussed in Section 6.1, this property allows to relax
the requirement that the values L and «x involved in [C1] are known in advance.

ReMARK 2. The result of the last theorem is in some sense adaptive w.r.t. the
unknown sparsity. Indeed, while the estimator J, involves d*, which is merely
a known upper bound on the true sparsity s = Card(J) and may be significantly
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larger than s, it is the true sparsity s that appears in condition (9) as a first argu-

ment of the quantity N(-,%). This point is important given the exponential rate

of divergence of N(-,9) when its first argument tends to infinity. On the other

hand, if condition (9) is satisfied with N(d*,1) instead of N(Card(J),?), then the

consistent estimation of J can be achieved by a slightly simpler procedure:
To(m, 2)= {j efl,...,d} max Q> xd*}.

The proof of this statement is similar to that of ”il“hm. 1 and will be omitted.

4. Counting lattice points in aball. The aim of the present section is to in-
vestigate the properties of the quantity N(d*, y) thatis involved in the conditions
ensuring the consistency of the proposed procedures. Quite surprisingly, the
asymptotic behavior of N(d*, y) turns out to be related to the Jacobi #-function.
To show this, let us introduce some notation. For a positive number y, we set

Gud* ) ={k ez k4. + k2. < yd*}, Go(d*, 1) ={k e Gi(a"): k1 =0}

along with N;(d*,y) = Card61(d*,yv) and N»(d*,y) = Card6»(d*,7). In simple
words, Ni(d*,r) is the number of lattice points lying in the d*-dimensional ball
with radius (yd*)!/2 and centered at the origin, while N»(d*,7) is the number of
(integer) lattice points lying in the (d* — 1)-dimensional ball with radius (yd*)!/?
and centered at the origin. With this notation, the quantity N(¢,-) of Theorem 1
can be written as N;(¢,-) — N»(¢,-). By volumetric arguments, one can check that
V(@) (y7 — D (@2 < Ni(d*,y) < V(@ )y7 + 1) (d*)?/2, where V(d*) =
" /2 )T (1 + d*/2) is the volume of the unit ball in R4". Furthermore, similar
bounds hold true for N,(d*,y) as well. Unfortunately, when d* — oo, these in-
equalities are not accurate enough to yield non-trivial results in the problem of
variable selection we are dealing with. This is especially true for the results on
impossibility of consistent estimation stated in Section 5.

In order to determine the asymptotic behavior of Ni(d*,y) and N»(d*,y) when
d* tends to infinity, we will rely on their integral representation through Jacobi’s
0 -function. Recall that the latter is given by h(z) = Zrezzrz, which is well de-
fined for any complex number z belonging to the unit ball |z| < 1. To briefly ex-
plain where the relation between N;(d*,y) and the 6-function comes from, let
us denote by {a .} the sequence of coefficients of the power series of h(z)4", that
ish(z)? =3 _,arz".Oneeasily checks that Vr €N, a, = Card{k € Z¢" : ki+...+
Icfl* =r}. Thus, for every y such that yd* is integer, we have N;(d*,7)= Z’;ZZ ar.
As a consequence of Cauchy’s theorem, we get :

1

d*
Ny(d*,p) = f h(z) dz

zrd" z(1—-2z)

T omi
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F1G 1. Lattice points in a ball of radius R = yd* = 3.2 in the three dimensional space (d* = 3).
Red points are those of 6,(d*,y)\ 6.(d*,y) while blue stars are those of 6,(d*,y). In this example,
N(d*,y)=N(3,1.07) =110.

where the integral is taken over any circle |z| = w with 0 < w < 1. Exploiting
this representation and applying the saddle-point method thoroughly described
in [14], we get the following result.

PROPOSITION 2. Lety >0 be an integer and let,(z) =logh(z) — ylogz.

1.

2.

There is a unique solution zy in(0,1) to the equation I’T(z) =0. Furthermore,
the functiony — z, is increasing and I;’ (z)>0.
Fori=1,2, the following equivalences hold true:

e (h(zp) @ 1+0(1)
N;(d ,7’)—( z¥ ) h(zy)i—lzy(l—zr)(2|;f(zy)7'fd*)l/2,

as d* tends to infinity.

Herealfter, it will be useful to note that the second part of Prop. 2 yields

1
log(Nl(d*,y)—Ng(d*,y))=d*lr(zr)—Elogd*—kcr—ko(l), asd*— o0, (12)

with ¢, = log(

h(z,)-1

h(zy)zy(1-24) /271 (zy)

). Furthermore, while the asymptotic equiva-

lences of Prop. 2 are established for integer values of y > 0, relation log (N1 (d*,7)—
No(d*,y)) = d*|,(zy)(1+ 0(1)) holds true for any positive real number y [30]. In
order to get an idea of how the terms z, and |,(z,) depend on 7, we depicted in
Fig. 2 the plots of these quantities as functions of y > 0.

Combining relation (12) with Thm. 1, we get the following result.
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F1G 2. The plots of mappingsy — z, and y — |,(z,). One can observe that both functions are in-
creasing, the first one converges to 1 very rapidly, while the second one seems to diverge very slowly.

CoroLLARY 3. Letcondition [Cl(k, L)] be satisfied with some known constants
Kk > 0 and L < oo. Consider the asymptotic set-up in which both d = d, and
d* = d?, tend to infinity as n — co. Assume that d grows at a sub-exponential rate
in n, thatisloglogd = o(log n). If

I d* 2

imsu

n_,oop logn |r(zr)

withy = L/k, then consistent estimation of ] is possible and can be achieved, for

instance, by the estimator Tn.

5. Tightness of the assumptions. In this section, we focus our attention on
the functional class ¥(x, L) of all functions satisfying assumption [C1(x, L)]. For
emphasizing that J is the sparsity pattern of the function f, we write J; instead
of J. We assume that s = Card(J) = d*. The goal is to provide conditions un-
der which the consistent estimation of the sparsity support is impossible, that is
there exists a constant ¢ > 0 and an integer ny € N such that, if n > n,,

inf sup Pr(J#Js) 2 ¢,
J fex(x,L)
where the inf is over all possible estimators of J;. To this end, we introduce a set
of M + 1 probability distributions uy, ..., ua on 3(x, L) and use the fact that

inf sup Pf(]#]f)>1nf—ZJ Pr(J # Jr) we(df). (13)
X(x,L)

T fe5ix,1)

These measures ¢ will be chosen in such a way that for each £ > 1 there is a set
J¢ of cardinality d* such that u,{ Js = J;} = 1 and all the sets Ji,..., Ja are distinct.
The measure y is the Dirac measure in 0. Considering these us as “priors” on
¥(x, L) and defining the corresponding “posteriors” Py, Py, ...,Py by

Py(A)= f Ps(A)u¢(df), for every measurable set AC R”,
Y(x,L)
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we can write the inequality (13) as

inf sup Pe(J# Jr)> mf—ZPe(w £10), (14)

T feX(x,L)

where the inf is taken over all random ) taking values in {0,..., M}. The latter
inf will be controlled using a suitable version of the Fano lemma. To state it,
we denote by ¢ (B, Q) the Kullback-Leibler divergence between two probability
measures P and Q defined on the same probability space.

LeEmMa 4 (Corollary 2.6 of [39]). Let M > 3 be an integer, (¥, .</) be a mea-
surable space and let B, ..., Py be probability measures on (Z',.</). Let us set
Pe,m =infy M1 Zé\/[ VP (4 #0), where theinf is taken over all measurable func-
tionsy : % — {1,...,M}. If for some 0 < a < 1, 37~ S A (P, Ry) < alogM,
then pe > > = —a.

We apply this lemma with 2 being the set of all arrays y = {yx : k € Z4} such
that for some K > 0 the entries yx = 0 for every k larger than K in £,-norm. It fol-
lows from Fano’s lemma that one can deduce a lower bound on p, s, the quan-
tity we are interested in, from an upper bound on the average Kullback-Leibler
divergence between P, and Py. With these tools at hand, we are in a position to
state the main result on the impossibility of consistent estimation of the sparsity
pattern in the case when the conditions of Thm. 1 are violated.

THEOREM 2. AssumethatV = L/x >1 and (;*) > 3. Lety, bethe largest integer

satisfyingy (1+ (h(z,)—1)"") <9, where the Jacobi 8 -functionh and z, are those
defined in Section 4.
i) Iffor somea <(0,1/2),
N(d*,y,)d*log(d/d*) S b,

2 Z—K%, (15)
n ar,

then, for d* large enough, infysups Pf ( T#7J5) > 1 —a.
ii) If for somea €(0,1/2),
d*log(d/ d*)

n
theninfysupey Pe(J# Jf) = 3 —a.

(16)

QI>‘>‘

It is worth stressing here that condition (15) is the converse of condition (9) of
Thm. 1 in the case d* — oo, in the sense that condition (9) amounts to requiring
that the left-hand side of (15) is smaller than some constant. There is however
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one difference between the quantities involved in these conditions: the term
N(d*,9(1+ 7)) of (9) is replaced by N(d*,y,) in condition (15). One can won-
der how close 7, is to 9. To give a qualitative answer to this question, we plotted
in Figure 3 the curve of the mapping ¥ — 7, along with the bisector ¢ — . We
observe that the difference between two curves is small compared to . As we
discuss it later, this property shows that the constants involved in the necessary
condition and in the sufficient condition for consistent estimation of J are very
close, especially for large values of 9.

o
S

o _|
0

60
|

40

20

T T T T T 1
0 20 40 60 80 100

F1G 3. The curve of the function L — y, (blue) and the bisector (red).

6. Adaptivity and minimax rates of separation.

6.1. Adaptation with respect to L and x. The estimator J(m, ) we have in-
troduced in Section 3 is clearly nonadaptive: the tuning parameters (m, 1) rec-
ommended by the developed theory involve the values L and x, which are gen-
erally unknown. Fortunately, we can take advantage of the fact that the choice of
m and A is governed by the one-dimensional parameter ¢ = L(1 + 7)/x. There-
fore, it is realistic to assume that a finite grid of values 1 < < ... <Ug <oois
available containing a true value of ¥. The following result provides an adaptive
procedure of variable selection with guaranteed control of the error.

PrOPOSITION 5. Let1 <th <...<g < oo andt > 0 be given values and set'
Max;—1,...d 2 ez k]gglf
minje; 3 0 Ok
For every il €N, let us denote J,,(i) = J,,(m(9;), A(9;)) with my(9) = (8)'/2 and
2\/ZN(Z,ﬁ)d*log(Zed/d*)+4d*10g(2ed/d*)
n

i*:min{i:(1+7:) St‘/‘i}SK.

Ag()=

'We use the convention that the minimum over an empty set equals +o00.
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Ifthe condition4As(0;+) < kv /(1+7) is fulfilled, then the estimatorfgd = Ulel Tn(@)
satisfies P(J24 # J) < (K +2)(d*/2ed)?".

In simple words, if the grid of possible values {;} has a cardinality K which
is not too large (that is K(d*/d)*" — 0), then declaring a variable relevant if
at least one of the procedures J,(i) suggests its relevance provides a consis-
tent and adaptive variable selection strategy. The proof of this statement fol-
lows immediately from Prop. 1 and Thm. 1. Indeed, applying Prop. 1 with A =2
yields P(J2d ¢ J) < ZleP(]An(i) ¢ J) < K(d*/2ed)?", while Thm. 1 ensures that
P(J24 2 ) <P(J,(i*) B J) < 2(d*/2ed)*.

6.2. Minimax rates of separation. Since the methodology of Section 3 takes
its roots in the theory of hypotheses testing, one naturally wonders what are
the minimax rates of separation in the problem of variable selection. The re-
sults stated in foregoing sections allow us to answer this question in the case of
Sobolev smoothness 1 and alternatives separated in L2-norm. The following re-
sult, the proof of which is postponed to the Appendix E provides minimax rates.
We assume herein that the true sparsity s = Card(J) and its known upper esti-
mate d* are such that d*/s is bounded from above by some constant.

PROPOSITION 6.  There is a constant D* depending only on L such that if

> D { (log(d/s))_z/(4+s)\/ slog(d/s) }

n? n

then there exists a consistent estimator of J. Furthermore, the consistency is uni-
form inf €X(x, L). On the other hand, there is a constant D, depending only on L
such that if
log(d/s)\ 2“4+ slog(d/s)
SDal—7=— \/ I
n n

then uniformly consistent estimation of ] is impossible.

Borrowing the terminology of the theory of hypotheses testing, we say that
(%)—y @)y % is the minimax rate of separation in the problem of
variable selection for Sobolev smoothness one. These results readily extend to
Sobolev smoothness of any order 8 > 1, in which case the rate of separation
takes the form (%)—2/3 [ap+s)y, %. The first term in this maximum co-
incides, up to the logarithmic term, with the minimax rate of separation in the
problem of detection of an s-dimensional signal [22]. Note, however, that in our
case this logarithmic inflation is unavoidable. It is the price to pay for not know-

ing in advance which s variables are relevant.
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7. Nonparametric regression with random design. So far, we have ana-
lyzed the situation in which noisy observations of the regression function f(-)
are available at all points x € [0,1]4. Let us turn now to the more realistic model
of nonparametric regression, when the observed noisy values of f are sampled
at random in the unit hypercube [0, 1]¢. More precisely, we assume that 7 in-
dependent and identically distributed pairs of input-output variables (X;, ¥;),
i=1,...,n are observed that obey the regression model

Y, =f(X;)+o¢;, i=1,...,n.

The input variables X, ..., X, are assumed to take values in R4 while the output
variables Yi,...,Y, are scalar. As usual, &1,...,¢&, are such that E[¢;|X;] =0, i =
1,...,n; additional conditions will be imposed later. Without requiring from f to
be of a special parametric form, we aim at recovering the set J c {1,...,d} of its
relevant variables. The noise magnitude o is assumed to be known.

It is clear that the estimation of J cannot be accomplished without impos-
ing some further assumptions on f and on the distribution Px of the input vari-
ables. Roughly speaking, we will assume that f is differentiable with a squared
integrable gradient and that Py admits a density which is bounded from below.
More precisely, let g denote the density of Px w.r.t. the Lebesgue measure.

[C2] g(x)=0forany x ¢ [0,1]¢ and that g(x) > gmi for any x €[0,1]¢.

The next assumptions imposed to the regression function and to the noise re-
quire their boundedness in an appropriate sense. These assumptions are needed
in order to prove, by means of a concentration inequality, the closeness of the
empirical coefficients to the true ones.

[C3(Lwo, L2)] The L°([0,1]9,R, Px) and L?([0,1]9,R, Px) norms of the function f
are bounded from above respectively by Ly, and Ly, i.e., P(|f(X)| < Ls) =1
and E[f(X)?] < L3.

[C4] The noise variables satisfy a.e. E[e!¢!|X;] < e’*/2 for all ¢ > 0.

We stress once again that the primary aim of this work is merely to under-
stand when it is possible to consistently estimate the sparsity pattern. The esti-
mator that we will define is intended to show the possibility of consistent esti-
mation, rather than being a practical procedure for recovering the sparsity pat-
tern. Therefore, the estimator will be allowed to depend on the parameters gmin,
L, x and L, appearing in conditions [C1-C3].

7.1. An estimator of ] and its consistency. The estimator of the sparsity pat-
tern J that we are going to introduce now is based on the following simple ob-
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servation: if j ¢ J then 6 [f] = 0 for every k such that k; # 0. In contrast, if j € J
then there exists k € Z4 with k i # 0 such that |0 [f]| > 0. To turn this observa-
tion into an estimator of J, we start by estimating the Fourier coefficients 6y[f]
by their empirical counterparts:

k(X))
~ glXy)
Then, for every £ € N and for any y > 0, we introduce the notation S{M ={ke
Z%: ||kl < m, ||kllo <¢,k;j # 0}. The estimator of J is defined by

~ 1
O, = — Y;, kez?.
n

Thm,)={jeq1,...,d}: max, g 10el>2}, (17)

keS{n a
where m and A are some parameters to be defined later. The next result, the
proof of which is placed in the supplementary material, provides consistency
guarantees for fnl) (m,A).

THEOREM 3. Let conditions [C1-C4] be fulfilled with some known values gmin,
W = 2L/x and L,. Assume furthermore that the design density g and an upper
estimate on the noise magnitude o are available. Set m =(9d*)'/? and A = 4(o +
L)(d*log(24v¥d/d*)/ng?, )V/?. If the following conditions are satisfied:

d*log(24vTd/d*) _ L5 128(0 + Lo d*N(d*, #)log(24vFd/d") _
n T N8min

K, (18)

then the estimator JW(m, 7) satisfiesP(JV(m, 1) # J) < (8d/d*)~7".

If we take a look at the conditions of Theorem 3 ensuring the consistency of
Aﬁll) , it becomes clear that the strongest requirement is the second inequality in
(18). Roughly speaking, this condition requires that d*N(d*,#)log(d/d*)/n is
bounded from above by some constant. According to results stated in Section 4,
N(d*, 1) diverges exponentially fast, making inequality (18) impossible for d*

larger than log n up to a multiplicative constant.

It is also worth stressing that although we require the Px-a.e. boundedness of
f by some constant L, this constant is not needed for computing the estima-
tor proposed in Thm. 3. Only constants related to some quadratic functionals
of the sequence of Fourier coefficients i [f] are involved in the tuning parame-
ters m and A. This point might be important for designing practical estimators
of J, since the estimation of quadratic functionals is more realistic, see for in-
stance [27, 9], than the estimation of sup-norm.

Theorem 3 can be reformulated to characterize the level of relevance x for
the relevant components of X making their identification possible. In fact, an
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alternative way of stating Theorem 3 is the following: under conditions [C1-
C4] if ¥ is an arbitrary tuning parameter satisfying the first inequality in (18),
then the estimator fnl) (m,A)—with m and A chosen as in Theorem 3—satisfies
P( Af,l)(m, A)# J) <(8d/d*)~%" if the smallest level of relevance x for components
X; of X with j € J is not smaller than 8A2N(d*, m?/d*). This statement can be
easily deduced from the proof of Theorem 3 (cf. supplementary material).

7.2. Tightness of the assumptions. A natural question is now to check that
the assumptions of Thm. 3 are tight in the asymptotic regimes of fixed sparsity
and increasing ambient dimension, as well as increasing sparsity. We will only
establish an analogue of claim ii) of Thm. 2. An attempt to prove a result similar
to claim i) of Thm. 2 was done in [11, Theorem 2]. However, the result of [11]
involves a stringent assumption on the empirical Gram matrix (cf. condition (6)
in [11]) and, unfortunately, we are unable to prove the existence of a sampling
scheme for which this assumption is fulfilled.

We assume that the errors g; are i.i.d. standard Gaussian and we focus our
attention on the functional class >(x, L). The following simple result shows that
the conditions of Thm. 3 are tight in the case of fixed intrinsic dimension.

PROPOSITION 7. Let the design X1,...,X, € [0,11¢ be either deterministic or
random. If for some positive a < 1/2, the inequality

d*log(d/d*) > !
—, =

holds true, then thereis a constant ¢ > 0 such that inf; supgey, 1) Pi(J. #Jf)>c.

8. Concluding remarks. The results proved in previous sections almost ex-
haustively answer the questions on the existence of consistent estimators of the
sparsity pattern in the model of Gaussian white noise and, to a smaller extent,
in nonparametric regression. In fact as far as only rates of convergence are of
interest, the result obtained in Thm. 1 is shown in Section 5 to be unimprovable.
Thus only the problem of finding sharp constants remains open. To make these
statements more precise, let us consider the simplified set-up o = ¥ = 1 and
define the following two regimes:

e The regime of fixed sparsity, i.e., when the sample size n and the ambi-
ent dimension d tend to infinity but the intrinsic dimension d* remains
constant or bounded.

e The regime of increasing sparsity, i.e., when the intrinsic dimension d*
tends to infinity along with the sample size n and the ambient dimension
d. For simplicity, we will assume that d* = O(d'~¢) for some € > 0.
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In the fixed sparsity regime, in view of Theorems 1 and 3, consistent estimation
of the sparsity pattern can be achieved both in Gaussian white noise model and
nonparametric regression as soon as limsup,,_,.(d*logd)/n < c., where c, is
the constant defined by ¢, = 1/8 for the Gaussian white noise model and

L% grznin )
212" 28(1+4 L)>N(d*,2L)
for the regression model. On the other hand, by Thm. 2 and Prop. 7, consistent
estimation of the sparsity pattern is impossible if liminf,_.(d*logd)/n > c*
with ¢* = 2. Thus, up to multiplicative constants ¢, and c* (which are clearly
not sharp), the results of Theorems 1 and 3 cannot be improved in the regime of
fixed sparsity.

C, =min (

In the regime of increasing sparsity, the results we get in the model of Gaus-
sian white noise are much stronger than those for nonparametric regression. In
the former model, taking the logarithm of both sides of inequality (9) and using
formula (12) for N(d*,-) = N1(d*,-) — N»(d*,-), we see that consistent estimation
of J is possible when, for some 7 > 0 and for all n, the following two conditions
are fulfilled:

{|L+T(ZL+T)d* +Llogd* +loglog(d/d*)—2logn <c,, 19

logd* +loglog(d/d*)—logn < ¢}

with some constants ¢, = ¢,(L,7) and ¢} = ¢|(L, 7). On the other hand, Thm. 2
yields that there are some constants ¢; and c'i such that it is impossible to con-
sistently estimate J if either one of the conditions

1
ly, (27, )d" + 5 logd* +loglog(d/d*)—2logn > ¢, (20)
logd*+loglog(d/d*)—logn > ¢}, (21)

is satisfied. First note that the left-hand side of the second condition in (19) is
exactly the same as the left-hand side of (21). If we compare now the left-hand
side of the first condition in (19) with the left-hand side of (20), we see that only
the coefficients of d* differ. To measure the degree of difference of these two
coefficients we draw in Figure 4 the plots of the functions L — l;(z;) and L —
l,. (zy,), with 7, as is Thm. 2. One can observe that the two curves are very close
especially for relatively large values of L. This implies that the conditions (19) are
tight. A simple consequence of inequalities (19) and (20) is that the consistent
recovery of the sparsity pattern is possible under the condition d*/logn — 0 and
impossible for d*/logn — oo as n — 0o, provided that loglog(d/d*) = o(log n).
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FIG 4. The curves of functions L — 1;(z1) (blue curve) and L — IrL (zn ) (red curve).

Still in the regime of increasing sparsity, but for nonparametric regression, we
proved that consistent estimation of the sparsity pattern is possible whenever

{lm(zm)d* +1logd* +loglog(d/d*)—logn < c,, o)

logd*+loglogd —logn < ¢},

with some constants ¢, = ¢,(&min,0, L2, L) and g’z = 2log(Ly/Lw). As we have
already mentioned, the second condition in (22) is tight, up to the choice of ¢},
in view of Proposition 7. It is natural to expect that the first condition is tight as
well, since it is in the model of Gaussian white noise, which has the reputation
of being simpler than the model of nonparametric regression. However, we do
not have a mathematical proof of this statement.

Let us stress now that, all over this work, we have deliberately avoided any dis-
cussion on the computational aspects of the variable selection in nonparametric
regression. The goal in this paper was to investigate the possibility of consistent
recovery without paying attention to the complexity of the selection procedure.
This lead to some conditions that could be considered a benchmark for assess-
ing the properties of sparsity pattern estimators. As for the estimators proposed
in Section 3, it is worth noting that their computational complexity is not always
prohibitively large. A recommended strategy is to compute the coefficients O
in a stepwise manner; at each step K =1,2,...,d* only the coefficients Ox with
|lkllo = K need to be computed and compared with the threshold. If some §k
exceeds the threshold, then all the variables XJ corresponding to nonzero coor-
dinates of k are considered as relevant. We can stop this computation as soon
as the number of variables classified as relevant attains d*. While the worst-
case complexity of this procedure is exponential, there are many functions f for
which the complexity of the procedure will be polynomial in d. For example,
this is the case for additive models in which f(x) =fi(x;,)+...+f4+(x; .) for some
univariate functions fi, ..., fz.
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Note also that in the present study we focused exclusively on the consistency
of variable selection without paying any attention to the consistency of regres-
sion function estimation. A thorough analysis of the latter problem being left to
a future work, let us simply remark that in the case of fixed d*, under the con-
ditions of Thm. 3, it is straightforward to construct a consistent estimator of the
regression function. In fact, it suffices to use a projection estimator with a prop-
erly chosen truncation parameter on the set of relevant variables. The situation
is much more delicate in the case when the sparsity d* grows to infinity along
with the sample size n. Presumably, condition (19) is no longer sufficient for
consistently estimating the regression function. The rationale behind this con-
jecture is that the minimax rate of convergence for estimating f in our context,
if we assume in addition that the set of relevant variables is known, is equal to
n=2/2+d") = exp(—2log n/(2 + d*)). If the left-hand side of (19) is equal to a con-
stant and loglogd = o(logn), then the aforementioned minimax rate does not
tend to zero, making thus the estimator inconsistent.

Finally, we would like to mention that the selection of relevant variables is
a challenging statistical task, which might be useful to perform independently
of the task of regression function estimation. Indeed, if we succeed in identify-
ing relevant variables on a data-set having a small sample size, we can continue
the data collection process more efficiently by recording only the values of rel-
evant variables. This may considerably reduce the memory costs related to the
data storage and the financial costs necessary for collecting new data. Then, the
regression function may be estimated more accurately on the base of this new
(larger) data-set.

APPENDIX A: PROOF OF PROPOSITION 1

To ease notation, we write J, instead of fn(m, A). It is clear that T ¢ J if and
only if 4j € J¢ such that max, <4+ /le_lmaxleppd an ;= 1, where Q]m I :Zkesj 0,?.
’ ’ m,I
For every j €{l,...,d},letussetR] ,=> o (£%—1)and
’ m,I

Nljn,l =(an,z)‘”22kesjm'l Ok &k so that

~i 1 i 2 QjI ; 1
i > Y _ VXmI . j Lo
Q1= E kes), | (J/k n)_Qm'I-i_i‘/ﬁ Ny, 1+ an,I' (23)

For j € ¢, the first two terms of the last sum vanish and, therefore, we have

Togrt=U U U{R,znad=U U U {R.,znu}

jeIet<ar jepd (<d* jepd jeJ NI

where the last equality results from the fact that R{;L ;=0if j & I. The random
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variable R{n’ » being a centered sum of squares of independent standard Gaus-

sian random variables, follows a translated y2-distribution. The tails of this dis-
tribution can be evaluated using the following result.

LeEmMa 8 (cf. Lemma 1 in [27]). Let&y,...,Ep be independent standard Gaus-
sian random variables. For every x > 0 and for every vector a = (ay, .., ap) € R?,
the following inequalities hold true:

D
(D @& -1)=2al.vx +2llalex) < exp(—x)
D
P> aid2-1)<-2lallvx) < exp(—x).
We apply this lemma to Rfml, for which ||lalw = 1 and ||a|5 = N(¢,m /().
Setting nA; =24/ N(/, mf /€)x +2x and using the union bound, we get

d*

P(fn ¢]) SP(U{Ie?de}izRi”f’l > nkg})
(=1 e
a* . B da* d
S; ¢ Card(P?) Iergd%p(%y[ >na) <e x;e(z),

One checks that Z?;E(?) < (2ed/d*)™ holds true for every pair of integers
(d*,d) such that 1 < d* < d (cf. supplementary material for a proof). Hence, for
x =Ad*log(2ed/d*), we get P(J, ¢ J) < (2ed/d*)~(A-Dd",

APPENDIX B: PROOF OF THEOREM 1
We begin with proving a stronger result that implies the claim of Thm. 1.

PrOPOSITION 9. Let a be a real number from (0,1). If for every j € J and for
s =Card(J) the inequality

n

2\/N(s,m§/s)log(25/a)+1] 1/2+ [210g(js/a)] 1/2}2 o1

Qs> { [As +
holds true, thenP(J ¢ J,,) < a.

Proor. To bound from above the probability of Type II error, we rely on the

equivalence: J ¢ J,, ifand only if 3 € J such that max,<g- /lg_l MaX e pd @fn <L



24 COMMINGES L. AND DALALYAN A.S.

Recall that s = Card(/J). Using Bonferroni’s inequality, we get

P(J ¢ Tn) SZjE]P(maX/lg maxQ < 1)

(<d* Iep?

gzj . (Q{ns <2 ) <smaxP(Q] ks). (25)

Sl

By virtue of decomposition (23),

(Qm S ):p(( Q{”X’]-’_%N’asvl)z-’_%(R{ﬂx,]_(Nzns,])z)S/ls).

One checks that R{ns, I (ansy ;)24 N(s,m2/s) is a drawn from y?2-distribution
with N(s, mf /s)—1 degrees of freedom. Therefore, using Lemma 8 stated in pre-
vious section, we get P(1 (Rj - (N] ])2) —2\/N(s,mf/s)log(23/a)) <

2 Therefore, P(Q’

As) is upper bounded by

m]—

2\/N(s,m§/s)log(23/a)+ 1)
- .

a b 1 j 2
Z+P(( Qmm]+ﬁNmsJ) <A+

Using the condition of the proposition, we get P(@fm ;S As) S 5o+ P(an 5=

—y/2log(2s/a)) < <. Combining this inequality with (25), we get the result of
Proposition 9. O

To deduce the claim of Thm. 1 from that of Prop. 9, we use the following lower
bound:

o _ni 2 2
Qp,;=Q - Z O Lkl zm,} Z K — Z O Lilkl>m.3

jesupp(k)c] jesupp(k)c]
>k-m2 Y. Ok|E>x—m;2Ls, (26)
jesupp(k)c]

for every j € J. Our choice of mg, ms = 4/sL(1+4+7)/x, ensures that Q{m,] >
x7/(1 + 7). Finally, using a very rough bound (which is sufficient for our pur-
poses), the right-hand side in (24) can be upper-bounded by 4A; if a is chosen
to be equal to 2(2ed /d*)~(A=14", Therefore, if = > 4A;, then (24) holds true
with @ =2(2ed /d*)~(A-1da" and, therefore, the type IT error has a probability less
than or equal to 2(2ed /d*)~(A-Dd",

APPENDIX C: PROOF OF PROPOSITION 2

Proof of the first assertion. This proof can be found in [30], we repeat here the
arguments therein for the sake of keeping the paper self-contained. Recall that
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N;(d*,y) admits an integral representation with the integrand:
h(z)@ 1 1 h(z)
= d*1 — 1.
z274" z(1-2z) z(1-2) eXp[ Og( z7 )]
For any y > 0, we define ¢(y)=eYh'(e ¥)/h(e )=, ., k2e V¥ />, e V¥
in such a way that
—_— = I’Y(e‘y) =0.

¢(J’)—7’ h(e‘y) - e~y

By virtue of the Cauchy-Schwarz inequality, it holds that >_k%e=Vk*Y e-vk* >
(Y k2e~vk*)?, Wy € (0,00), implying that ¢’(y) < 0 for all y € (0,00), ie., ¢ is
strictly decreasing. Furthermore, ¢ is obviously continuous with limy o ¢(y) =
+00 and lim, ., ¢ (y) = 0. These properties imply the existence and the unique-
ness of y, € (0,00) such that ¢(y,) = y. Furthermore, as the inverse of a decreas-
ing function, the function y — y, is decreasing as well. We set z,, = e ™7 so that
Y — zy is increasing. We also have

h(e?) y

P . R _2{Zk(k4—kz>z¢2_(zkkzz'f)z }
lT(ZT)_ h® (ZYH_ ? _ZY Zk Z;CZ Zk Z;CZ +r
:Z;Z{_gb/(y'f’)_¢(y7’)+}’}:—z;2¢/(yy)>0.

Proof of the second assertion. We apply the saddle-point method to the integral
representing N see, e.g., Chapter IX in [14]. It holds that

1 h(z)4* dz 1 .
N d*, = — _— = 1— -1 dl(z)d X 27
sy 2mi ﬁZI:zy ' z(1-z) 2mi |Z|:zy{Z( etz 2D

The first assertion of the proposition provided us with a real number z, such
that Ilr(zT) =0 and I’T’ (zy) > 0. The tangent to the steepest descent curve at z, is
vertical. The path we choose for integration is the circle with center 0 and radius
zy. As this circle and the steepest descent curve have the same tangent at zy,
applying formula (1.8.1) of [14] (with a = 0 since I”(z,) is real and positive), we
get that

27
d*l’r’(zr)

f {z(1-2) e Pdz = ez, (1 -z} e (1 +0(1),
|Z|:Zr

when d* — oo, as soon as the condition? %t[l,(z) — l,(z,)] < —u is satisfied for
some u > 0 and for any z belonging to the circle |z| =|z,| and lying not too close
to z,. To check that this is indeed the case, we remark that R[l,(z)] = log | % |

2R u stands for the real part of the complex number u.
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Hence, if z = zyei‘“ with w € [wg, 27 — wy] for some wq €]0, [, then

‘h(z) C42z+23 0,20 - 1+zl+z,+23, 2K

Y Y r
z Zy Zy
iw k2
B 1+ ez, |+ 2, +22k>1zr
< 7 .
Zy

1422423, z;fz
14z, el@0|+z, 423 o, z,’fz
completes the proof for the term N;(d*,y). The term N»(d*,y) can be dealt in
the same way.

Therefore R[l,(z) — Rl,(z,)] < —p with u = log( ) > 0. This

APPENDIX D: PROOF OF THEOREM 2

To prove i) we apply Lemma 4 with M = (;*) in conjunction with a standard
result the proof of which can be found in [11] and in the supplementary material.

LEMMA 10. Let S be a subset of 7% of cardinality |S| and A be a constant.
Define us as a discrete measure supported on the finite set of functions {f,, =
D resAwk i : @ € {£115} such that us(f = f,,) = 275! for every w € {£1}5. If we
define the probability measure Ps by Ps(A) = fZ(K, D Ps(A) us(df), for every mea-
surable set A CR", and Py = Py, then # (Ps,Po) < |S|A*n2.

Without loss of generality, we can assume x = 1 (the general case can be
reduced to this one by replacing L and n respectively by L/x and nk). Thus,
17 = L. We denote the set X(1,L) by >} and choose uy, ..., up as follows: ug is
the Dirac measure ¢, y; is defined as in Lemma 10 with S = 6;(d*,y1) and
A= [N(d*,n)]_l/z. The measures up,...,uy are defined similarly and corre-
spond to the M — 1 remaining sparsity patterns of cardinality d*.

In view of inequality (14) and Lemma 4, it suffices to show that the measures
ug satisfy ug(Xr)=1and Z?io H(Pg,Py) < (M+1)alog M. Combining Lemma 10

with Card(S) = N;(d*,v1) and inequality (15), we get & (P;,[Py) < % <

% < alogM. Now, let us show that u;(X;) = 1. By symmetry, this will
imply that uy(X;) = 1 for every £. Since u; is supported by the set {f,, : @ €

{£1}9@5r} it is clear that Zkﬁéo 07 1fo] = A2[N\(d*,y) — No(d*,y1)] =1and,

.
S Kel= > Ba=Y Y BASAN@)

kezd keé6i(d* L) j=lke6i(d* L)
Nl (d*» YL)

<y——, =1,...,d*.
TUN(d@"r)
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The results stated in Section 4 imply that Ny(d*,y1)/N(d*,y1) ~a+—o0 1+(h(zy)—
1)~!. Our choice of v ensures that, for d* large enough, f,, € >;. This completes
the proof of claim i). To prove ii), we still use Lemma 4 with py = 60 and y; = 6¢,,
where for every ¢ € {1,..., M}, f; is chosen as follows. Let I3,..., Iy be all the
subsets of {1,...,d} containing exactly d* elements. We define f;, for £ # 0, by its
Fourier coefficients {9,€ : k €74} as follows:

o — 1, k=(ki,...,kqa)=eys,-.-, laer),
k 0, otherwise.

Obviously, all the functions f; belong to ¥ and, moreover, each f; has I; as spar-
sity pattern. One easily checks that our choice of f, implies ¢ (Py,,Ps,) = n|lfy —
foll5 = n. Therefore, if alog M = alog (;*) > n, the desired inequality is satisfied.
To conclude it suffices to note that log (:*) > d*log(d/d*).

APPENDIX E: PROOF OF PROPOSITION 6

In view of Thm. 1, applied with A =2 and 7 =1, the consistent (uniformly in
84/2N(s, 2L/K)d*log(d/d*)+l6d*log(d/d

f € ¥(k, L)) estimation of J is possible if J < 5
Since d*/s is upper-bounded by some constant, there is a constant D7 such that
the left-hand side of the last display is upper-bounded by

[ VN(s,2L/x)slog(d/s) , slog(d/s)
Dl{ n \/ n }

As proved in Lemma 11 below, N(s,2L/x) < 0.3(187weL/x)*/?. Thus, there is a
constant D, such that

{ VN(s,2L/x)slog(d/s) \ slog(d /s)} - Dix=s/*\/slog(d/s) \/ slog(d/s)
- n n ’

n n

Combining these results, we see that under the conditions 2Djslog(d/s)/n <«

and
- D3 4/slog(d/s) o 14

SKO4,
1 n

consistent estimation of J is possible. Taking D* = 2Dj(1 + D3), we complete
the proof of the first claim of the proposition. To prove the second assertion,

. . 9 s
we apply Thm. 2. Since it holds that 2y, >y, +1 > TGz, D7 = TGz T we
deduce from Thm. 2 that there are some constants D3 and Dy such that if

Ds{ V/N(s,Ds/x)slog(d/s) \/ slog(d/s)} -

n n
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then consistent estimation of J is impossible. Since the s-dimensional L, ball
with radius /57 contains the Ly, ball of radius /7, N(s, D4/x) > (Ds)k~5/2 for
some constant Ds. By rearranging different terms, we get the desired result.

LEMMA 11.  Foreveryy >1 and d* €N, Ny(d* v)<0.3(9mey)4 /2.

PrOOE One readily checks that if ||k||2 < d*y, then the hypercube centered at
k with side of length 1 is included in the ball centered at the origin and having
radius y/d*y +0.5V/d". Therefore, Ny(d*,7) < (y/d*y +0.5v/d*)4"Vol[ B4+(0; 1)],
where Vol[ B4+(0;1)] stands for the volume of the unit ball in R4". Using the well-
known formula for the latter and the Stirling approximation for every d* > 1,
we get Vol[Bg«(0;1)] = TP <0. 4% This implies that N;(d*,y) <

» a*r(d*/2) — V2d*
* * * 2 %
0.4(L~ SrdZyd/z % <0.3(97ey)?’/? and the result follows. O

APPENDIX F: SUPPLEMENT TO “TIGHT CONDITIONS FOR CONSISTENCY
OF VARIABLE SELECTION IN THE CONTEXT OF HIGH
DIMENSIONALITY”

This supplementary material provides the proofs of Theorem 3, Proposition
7, Corollary 3 and Lemma 10 of the article “Tight conditions for consistency of
variable selection in the context of high dimensionality”.

El. Proofof Theorem3. To ease notation, we write J instead of Afll) through-
out this proof. The empirical Fourier coefficients can be decomposed as follows:

§k =0k +zr, where 0= lzn: ka(Xi)f(Xi) and zy = gz’l: (pk(Xi)si. (28)
n<= glX;) n <~ g(X;)

If, for a multi index k, 0y = 0, then the corresponding empirical Fourier coeffi-
cient will be close to zero with high probability. To show this, let us first look at
what happens with z’s. We have, for every real number x,

x2
P(lzel>x|X1,...,X,) Sexp - ﬁ) Vk € Spm.ar
k

with

Z or(X; )2 o?

{0.€) L gmin
Therefore, it holds that maxies , .. P(12x| > x|X1,...,X,) < exp(—ngfninxz/élaz).
This entails that by setting A, = (802d*log(24v'dd /d*)/ngZ,,)"/? and by using
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the inequalities (cf. Lemma 13 below)

24vFd\ ¢
Card(Sm,d*)SO.B( pr ) ,
we get

P(kmax |zk|>xl|xl,...,xn)s > P(Izk|>7Ll|X1,...,Xn)

S *
m,d
kGvad*

<2Card(Sp,a)e"Emn? /47" < 0.6(24vFd /d*) .

Next, we use a concentration inequality for controlling large deviations of &’s
from 6y’s. Recall that in view of the definition 0; = %Z" kX )f(X ;), we have

i=1 g(X;)
E(0%) = Ox. The boundedness of f yields |“”g’“(%3)f(X ) < V2Lso/gmin. Further-
2
more, the bound V = Var(%f(Xi)) < ffz(x)wg’z—ix))dx <2I%/g%. combined
with Bernstein’s inequality implies that
P(|0k — Or| > t) <2ex (— nit )
Ok = O T (VT V2 Lo /3 gmin)
2 a2
SZeXp(—ZgL), Vit >0.
4L2 ~+t Loo &min

d*log(24ﬁd/d*))1/2 Then

2
"8 min

Let us define A, =4L» (

7] 412 d*log(24v0d /d*
P(|9k—9k|>7tz)52exp(— 24" log( /d*) )

d*log(24vd /d*)\1/2
L3+ Loo L (—E=122)

The first inequality in the main condition of the theorem implies that the de-
nominator in the exponential is not larger than 2L§. Hence, P(maxkes |0r —
Ox| > 22) <0.6/(24vVFd /d*)? . Let

m,d*

o ={ max |zx|<M} and .oh={ max |Ok|< A2}
keS keS

m,d* m,d*

One easily checks that
P(J¢ ¢ J°) <P(o)+P(f) <1.2/(24vV0d/d*)"".
Since d* > 1 and ¥ > 1, the last inequality implies

P(J¢ ¢ J°) <P(.f) +P(f) <0.4/(8VTd/d*)*".
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As for the converse inclusion, we have

p(]¢f)§p(3j efst.  max |0kl sz)

keS,, 4+ kj#0

<1{3jeJst __max [0l <22} +P(f) +P().

€S a+ kj#0

We show now that the first term in the last line is equal to zero. If this was not
the case, then for some value j, we would have Qj, > x and |0x| < 24, for all
k € Sy, q+ such that kj, # 0. This would imply that

Qpmar= Y. 0F<42*N(d*,m?/d").

kesjrgd*
On the other hand,
Qu-Qimar< Y, G=m? 3 Y ROz
[lkll2=m llkll2=m je]

Remark now that the choice of the truncation parameter m proposed in the
statement of the proposition implies that Qj, — Qjy,m,q¢* < k/2. Combining these
estimates, we get

Qi < g +4AZN(d*, m?d"),

which is impossible since Q;, > k.

E2. Proof of Proposition 7. Let M = (;*) and let {fo,f1,...,fa} be a set in-
cluded in X;. Let I3,..., Ips be all the subsets of {1,...,d} containing exactly d*
elements somehow enumerated. Let us set fo = 0 and define f;, for £ # 0, by its
Fourier coefficients {0,€ : k € 29} as follows:

gg_ 1) k:(kl)'--»kd):(llélp---)ldelp)»
k 0, otherwise.

Obviously, all the functions f; belong to ¥ and, moreover, each f; has I; as spar-
sity pattern. One easily checks that our choice of f, implies ¢ (Py,,Ps,) = n|lf, —
foll5 = n. Therefore, if alog M = alog (;*) > n, the desired inequality is satisfied.
To conclude it suffices to note that log (:*) islarger than or equal to d*log(d /d*) =
d*(logd —logd*).
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E3. Proof of Lemma 10. First we specify the notation. Let y = {yx : k € S}
and, for w € {+1}5, 0, = {Awy : k € S}. The likelihood ratio between P, = Ps,
and Py =Py, is

dp,, nﬂi
d—PO(y)—eXp [— 5 —I—nﬂw-y],

where, for a vector z € Z4, z2 = z - z. Then, the likelihood ratio between Ps and
Py is

1
Z ﬁexp(nﬂayy).

nA2|S| )
wef£1}5}

dPs )
P, y p
As a consequence, simple algebra yields

B S|
J (%(y))zpo(dyh(exp(”Az”exp ( ”Az)) < exp(ISinta),

2

The last inequality follows from the elementary inequality cosh(x) < e**, which
can be checked by decomposing the functions cosh(x) and e** in Taylor series
and comparing the corresponding terms.

E4. Proof of Corollary 3. Let us set y = L/x and v, = (1 + 7)y. Applying
Theorem 1 with A =2, we get that

P(J,#1) <3ed/d) "

provided that the condition

84/2N(d*,y-)d*log(2ed /d*) N 16d*log(2ed/d*) _ KT

. 29
n n T 147 (29)

is satisfied for some 7 > 0. Clearly, when d — oo, for every d* > 1, it holds that
(2ed/d*y ¥ <d™'*—o.

Therefore, it is sufficient to check that the assumptions

loglogd da* 2
lim 0808 =0, limsup — <

— 30
n—co logn n—oo logn —ly(zy) G0

imply that (29) is true for sufficiently large values of n. We will show that the
left-hand side of 29 tends to 0 as n — oo.

First remark that (30) yields

logd <n'®, d*<n'3
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for sufficiently large n. Therefore,

16d*log(2 *
lim 6d*log(2ed/d ):O.

n—00 n

Second, by continuity of the mappings y — |, and y — z,, there exists 7 > 0 such
that

. a* 2 . a*l,.(zy.)
limsup — < ——— <= limsup [ ———— -1 ] <0. 31
n—oo logn 1y (zy.) n—00 2logn

This inequality, combined with the relation log N(d*,y;) = d*l,.(z,.)(1 + o(1))
(cf. Eq. (12) in the manuscript [12]), implies that

log { \/N(d*,yf)d*log(Zed/d*)}

n
log N(d*, logd* loglog(2ed
<logn og V( 7/T)—l-l— os” | 28 og2ed)
2logn 2logn 2logn
a*, (z,.) logd* d* loglogd
<1 hali basatiaag] 1) =1
- ogn( 2logn (1+o(l)—1+ a* 2logn logn )

tends to a negative number tends to 0

— —0OQ.

This entails that the first term in the left-hand side of (29) tends to zero, which
completes the proof.

E5. Some technical lemmas.

LEMMA 12.  For everyy > 1 the numbers Ni(d*,y) = {k € 74" : ||k||§ < d*r}
admit the following upper bound:

Ny(d*,y) <0.3(9mey)® /2.
Prook. One readily checks that if || k|5 < d*y, then the hypercube centered at

k with side of length 1 is included in the ball centered at the origin and having
radius m +0.5v d*. Therefore,

Ny(d*,7) < (v d*y +0.5vd")¥ Vol[ B,+(0; 1)),

where Vol[B;+(0;1)] stands for the volume of unit ball in R4*, Using the well-
known formula for the latter and the Stirling approximation, for every d* > 1,
we get:

Vol[Bg+(0;1)] =

270d*/2 4 *\d* /2 4 «\d* /2
T e( '3( me/d*) ‘0'4( me/d*) )

a*r(d*/2) 24 2d*
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This implies that
9yd*\4/? 9yd*\ 42 (4me/d*)d"/? .
Ni(d*y) < Vol[B4+(0;1)] < 0.4 <0.3(9mey)? /2.
N r)_(4 ) ol[B-(0;1)] < ( ) L <oa(omer)
This proves the result. O

LEMMA 13, Let Sy g+ ={k € Z9 : ||kll2 < m, & ||kllo < d*}. If m = \/yd* with
y > 1, then Card(S,,4+) <0.3 (24ﬁd/d*)d*.

PrOOE Itis clear that
d *
Card(Sma) < | . |Ni(d"7)-
Combining this with the inequality
(=)
< | —
) —\d* )’
and the previous lemma, we get
d\* .
Card(Sy,q+) < (2—*) 0.3(9mey)? /2.

The claim of the lemma follows now from the inequlaity v9mee < 24. O

LemMa 14.  For every pair of positive integers(d, d*) such thatd* < d:
a (d o d*
Ze_lz(g) < (2ed/d*)".
Proor. We will proceed by induction over d*. If d* =1, we have

. d i
Zj_lz(z) —d<ed=(ed/d")".

Assume that the inequality

*

d :
ZZJ(@) < (2ed/d")"

is true for some 1 < d* < d. Let us show that this entails the inequality

Zj_fle(j) <(2ed/(@* +1)""".
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It holds that

* d * d—1
Z[‘f:z(e) < (2ed/a*)* +d( - )

2ed d a*

I\ (d*+1 d*+1 .
-+ (1-1/d)* ).
"

# a* _ a*
:(zed/(d*ﬂ))”’*“d +1(1+i*) +d(—e(d 1))

e 1
= (2ed /(d* 1”’“—(1 —
(2ed/(d”+1)) e\ T @

Using that (1+1/d*)4 <e,d*>1and d > d*+1, we get

a+1 (d . a1l (d*+1 d*+1
ZZ:I E(E)S(Zed/(d +1)) E(T+W)
<141
and the result follows. O
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