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TIGHT CONDITIONS FOR CONSISTENCY OF VARIABLE SELECTION IN THE CONTEXT
OF HIGH DIMENSIONALITY

By LaETiTIA COMMINGES AND ARNAK S. DALALYAN

Université Paris Est/ ENPC

We address the issue of variable selection in the regression model with
very high ambient dimension, i.e., when the number of variables is very
large. The main focus is on the situation where the number of relevant vari-
ables, called intrinsic dimension and denoted by d*, is much smaller than
the ambient dimension d. Without assuming any parametric form of the
underlying regression function, we get tight conditions making it possible
to consistently estimate the set of relevant variables. These conditions re-
late the intrinsic dimension to the ambient dimension and to the sample
size. The procedures that are provably consistent under these tight condi-
tions are simple: they are based on comparing the empirical Fourier coef-
ficients with an appropriately chosen threshold value.

The asymptotic analysis reveals the presence of two quite different re-
gimes. The first regime is when d* is fixed. In this case the situation in non-
parametric regression is the same as in linear regression, i.e., consistent
variable selection is possible if and only if logd is small compared to the
sample size n. The picture is completely different in the second regime,
d* — oo as n — 0o, where we prove that consistent variable selection in
nonparametric set-up is possible only if d* +loglogd is small compared to
logn.

1. Introduction. Real-world data such as those obtained from neuroscience, chemometrics,
data mining, or sensor-rich environments are often extremely high-dimensional, severely under-
constrained (few data samples compared to the dimensionality of the data), and interspersed with
a large number of irrelevant or redundant features. Furthermore, in most situations the data is
contaminated by noise making it even more difficult to retrieve useful information from the data.
Relevant variable selection is a compelling approach for addressing statistical issues in the sce-
nario of high-dimensional and noisy data with small sample size. Starting from Mallows (1973),
Akaike (1973), Schwarz (1978) who introduced respectively the famous criteria C,, AIC and BIC,
the problem of variable selection has been extensively studied in the statistical and machine learn-
ing literature both from the theoretical and algorithmic viewpoints. It appears, however, that the
theoretical limits of performing variable selection in the context of nonparametric regression are
still poorly understood, especially in the case where the number of variables, denoted by d and re-
ferred to as ambient dimension, is much larger than the sample size n. The purpose of the present
work is to explore this setting under the assumption that the number of relevant variables, here-
after called intrinsic dimension and denoted by d*, may grow with the sample size but remains
much smaller than the ambient dimension d.

In the important particular case of linear regression, the latter scenario has been the subject of a
number of recent studies. Many of them rely on /;-norm penalization—as for instance in (Tibshi-
rani, 1996, Zhao and Yu, 2006, Meinshausen and Bithlmann, 2010)—and constitute an attractive

AMS 2000 subject classifications: Primary 62G08, ; secondary 62H12
Keywords and phrases: variable selection, nonparametric regression, set estimation, sparsity pattern

1


http://www.imstat.org/aos/

2 COMMINGES L. AND DALALYAN A.S.

alternative to iterative variable selection procedures proposed by Alquier (2008), Zhang (2009),
Ting et al. (2010) and to marginal regression or correlation screening explored in (Wasserman and
Roeder, 2009, Fan et al., 2009). Promising results for feature selection are also obtained by confor-
mal prediction (Hebiri, 2010), minimax concave penalties in (Zhang, 2010), by Bayesian approach
in (Scott and Berger, 2010) and by higher criticism in (Donoho and Jin, 2009). Extensions to other
settings including logistic regression, generalized linear model and Ising model have been carried
out in (Bunea and Barbu, 2009, Ravikumar et al., 2010, Fan et al., 2009), respectively. Variable se-
lection in the context of groups of variables with disjoint or overlapping groups has been studied
by Jenatton et al. (2009), Lounici et al. (2010), Obozinski et al. (2011). Hierarchical procedures for
selection of relevant variables have been proposed by Bach (2009), Bickel et al. (2010) and Zhao
et al. (2009).

It is now well understood that in the high-dimensional linear regression, if the Gram matrix sat-
isfies some variant of irrepresentable condition, then consistent estimation of the pattern of rel-
evant variables—also called the sparsity pattern—is possible under the condition d*log(d/d*) =
o(n) as n — oo. Furthermore, it is well known that if (d* log(d /d*))/n remains bounded from below
by some positive constant when n — oo, then it is impossible to consistently recover the spar-
sity pattern. Thus, a tight condition exists that describes in an exhaustive manner the interplay
between the quantities d*, d and n that guarantees the existence of consistent estimators. The
situation is very different in the case of non-linear regression, since, to our knowledge, there is no
result providing tight conditions for consistent estimation of the sparsity pattern.

The papers (Lafferty and Wasserman, 2008) and (Bertin and Lecué, 2008), closely related to the
present work, consider the problem of variable selection in nonparametric Gaussian regression
model. They prove the consistency of the proposed procedures under some assumptions that—in
the light of the present work—turn out to be suboptimal. More precisely, in (Lafferty and Wasser-
man, 2008), the unknown regression function is assumed to be four times continuously differen-
tiable with bounded derivatives. The algorithm they propose, termed Rodeo, is a greedy procedure
performing simultaneously local bandwidth choice and variable selection. Under the assumption
that the density of the sampling design is continuously differentiable and strictly positive, Rodeo is
shown to converge when the ambient dimension d is O(log n/loglog n) while the intrinsic dimen-
sion d* does not increase with n. On the other hand, Bertin and Lecué (2008) propose a proce-
dure based on the ¢, -penalization of local polynomial estimators and prove its consistency when
d* = O(1) but d is allowed to be as large as logn, up to a multiplicative constant. They also have
a weaker assumption on the regression function which is merely assumed to belong to the Holder
class with smoothness 8 > 1.

This brief review of the literature reveals that there is an important gap in consistency conditions
for the linear regression and for the non-linear one. For instance, if the intrinsic dimension d* is
fixed, then the condition guaranteeing consistent estimation of the sparsity patternis (logd)/n — 0
in linear regression whereas it is d = O(log n) in the nonparametric case. While it is undeniable that
the nonparametric regression is much more complex than the linear one, it is however not easy to
find a justification to such an important gap between two conditions. The situation is even worse in
the case where d* — oo. In fact, for the linear model with at most polynomially increasing ambient
dimension d = O(nk), it is possible to estimate the sparsity pattern for intrinsic dimensions d*
as large as n'=¢, for some ¢ > 0. In other words, the sparsity index can be almost on the same
order as the sample size. In contrast, in nonparametric regression, there is no procedure that is
proved to converge to the true sparsity pattern when both n and d* tend to infinity, even if d*
grows extremely slowly.



CONSISTENT VARIABLE SELECTION IN NONPARAMETRIC REGRESSION 3

In the present work, we fill this gap by introducing a simple variable selection procedure that
selects the relevant variables by comparing some well chosen empirical Fourier coefficients to a
prescribed significance level. Consistency of this procedure is established under some conditions
on the triplet (d*, d, n) and the tightness of these conditions is proved. The main take-away mes-
sages deduced from our results are the following:

¢ When the number of relevant variables d* is fixed and the sample size n tends to infinity,
there exist positive real numbers ¢, and c* such that (a) if (logd)/n < c. the estimator pro-
posed in Section 3 is consistent and (b) no estimator of the sparsity pattern may be consis-
tent if (logd)/n > c*.

e When the number of relevant variables d* tends to infinity with n — oo, then there exist real
numbers ¢; and ¢;, i = 1,2 such that ¢, > 0, ¢; > 0 and (a) if ¢,d* +1loglogd —logn < ¢,
the estimator proposed in Section 3 is consistent and (b) no estimator of the sparsity pattern
may be consistent if ¢;d* +loglogd —logn > ¢5.

o In particular, if d grows not faster than a polynomial in 7, then there exist positive real num-
bers ¢y and ¢ such that (a) if d* < cylogn the estimator proposed in Section 3 is consistent
and (b) no estimator of the sparsity pattern may be consistent if d* > c%logn.

In the regime of a growing intrinsic dimension d* — oo and a moderately large ambient dimension
d =0(n®), for some C > 0, we make a concentrated effort to get the constant ¢y as close as possible
to the constant ¢. This goal is reached for the model of Gaussian white noise and, very surprisingly,
it required from us to apply some tools from complex analysis, such as the Jacobi 8-function and
the saddle point method, in order to evaluate the number of lattice points lying in a ball of an
Euclidean space with increasing dimension.

The rest of the paper is organized as follows. The notation and assumptions necessary for stating
our main results are presented in Section 2. In Section 3, two estimators of the set of relevant vari-
ables are introduced and their consistency is established, in the case where the data come from the
Gaussian white noise model. The main condition required in the consistency results involves the
number of lattice points in a ball of a high-dimensional Euclidean space. An asymptotic equivalent
for this number is presented in Section 4 via the Jacobi 8-function and the saddle point method.
Results on impossibility of consistent estimation of the sparsity pattern are derived in Section 5.
Then, in Section 6, we show that some of our results can be extended to the model of nonpara-
metric regression, under some additional assumptions, which are quite common in the context of
regression. The relation between consistency and inconsistency results are discussed in Section 7.
The technical parts of the proofs are postponed to the Appendix.

2. The problem formulation and the assumptions. We are interested in the variable selection
task (also known as model selection, feature selection, sparsity pattern estimation) in the context
of high-dimensional non-linear regression. Let f : [0, 1]¢ — R denote the unknown regression func-
tion. We assume that the number of variables d is very large, possibly much larger than the sample
size n, but only a small number of these variables contribute to the fluctuations of the regression
function f.

To be more precise, we assume that for some small subset J of the index set {1,..., d} satistying
Card(J) < d*, there is a function f : R€adU) — R such that

fx)=Ff(x;), VxeRY

where x; stands for the subvector of x obtained by removing from x all the coordinates with in-
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dices lying outside J. In what follows, we allow d and d* to depend on n but we will not always
indicate this dependence in notation. Note also that the genuine intrinsic dimension is Card(J);
d* is merely a known upper bound on the intrinsic dimension.

Let us stress right away that the primary aim of this work is to understand when it is possible to
estimate the sparsity pattern J (with theoretical guarantees on the convergence of the estimator)
and when it is impossible. The estimator that we will define in next sections is intended to show
the possibility of consistent estimation, rather than to provide a practical procedure for recover-
ing the sparsity pattern. Therefore, the estimator will be allowed to depend on different constants
appearing in conditions imposed on the regression function f and on some characteristics of the
noise.

To make the consistent estimation of the set J realizable, we impose some smoothness and

identifiability assumptions on f. In order to describe the smoothness assumption imposed on f,
let us introduce the trigonometric Fourier basis

1, k=0,
vr(x)=1 vV2cos(2rnk-x), ke(Z),, (1)
V2sin2nk-x), —ke(z),,

where (Z%), denotes the set of all k € Z4 \ {0} such that the first nonzero element of k is positive
and k - x stands for the the usual inner product in R4. In what follows, we use the notation (,-)
for designing the scalar product in L2([0,1]4;R), that is (h, hy = f[o,l]d h(x)h(x)dx for every hhe
L2([0,1]%;R). Using this orthonormal Fourier basis, we define

ZLz{f: Dk e < L Vje{l,...,d}}.

kezd

To ease notation, we set 0y [f] = (f, o) for all k € Z¢. In addition to the smoothness, we need also to
require that the relevant variables are sufficiently relevant for making their identification possible.
This is done by means of the following condition.

[C1(x,L)] The regression function f belongs to ¥;. Furthermore, for some subset J C {1,...,d} of
cardinality < d*, there exists a function f : RCardU) — R such that f(x) =f(x), Vx € R4 and it
holds that

Qilf1E > Olf*>x, VjeJ. 2)
k:kj#0

One easily checks that Q;[f] = 0 for every j that does not lie in the sparsity pattern. This provides
a characterization of the sparsity pattern as the set of indices of nonzero coefficients of the vector
Q[f]1=(Qu[f],..., Qalf]).

Prior to describing the procedures for estimating J, let us comment Condition [C1]. It is impor-
tant to note that the identifiability assumption (2) can be rewritten as f[ 0.1 (f (x)—fo1 f(x)dx; ) ‘dx >
x and, therefore, is not intrinsically related to the basis we have chosen. In the case of continuously
differentiable and 1-periodic function f, the smoothness assumption f € ; as well can be rewrit-
ten without using the trigonometric basis, since » , ;q k]? 0r[f12=(2m)2 f[o,u 410if(x)]? dx. Thus,
condition [C1] is essentially a constraint on the function f itself and not on its representation in
the specific basis of trigonometric functions.
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The results of this work can be extended with minor modifications to other types of smooth-
ness conditions imposed on f, such as Holder continuity or Besov-regularity. In these cases the
trigonometric basis (1) should be replaced by a basis adapted to the smoothness condition (spline,
wavelet, etc.). Furthermore, even in the case of Sobolev smoothness, one can replace the set > cor-
responding to smoothness order 1 by any Sobolev ellipsoid of smoothness 8 > 0, see (Comminges,
2011) for some additional details. Roughly speaking, the role of the smoothness assumption is to
reduce the statistical model with infinite-dimensional parameter f to a finite-dimensional model
having good approximation properties. Any value of smoothness order > 0 leads to this reduc-
tion. The value # =1 is chosen for simplicity of exposition only.

3. Idealized setup: Gaussian white noise model. In order to convey the main ideas without
taking care of some technical details, we start by focusing our attention on the Gaussian white
noise model, that has been proved to be asymptotically equivalent to the model of regression
(Brown and Low, 1996, Carter, 2007, Reil3, 2008), as well as to other nonparametric models (Brown
et al., 2004, Dalalyan and ReiR, 2006, Golubev et al., 2010). Thus, we assume that the available data
consists of Gaussian process {Y(¢): ¢ € L*([0,1]4;R)} such that

1
Ef[Y(¢)] =f f(x)p(x)dx,  Covi(Y(9),Y(¢")=— P(x)¢’(x)dx.
[0,1) " o
It is well-known that these two properties uniquely characterize the probability distribution of a
Gaussian process. An alternative representation of this process Y is

dY(x)=f(x)dx+n""2dw(x), x<[0,1]%,

where W(x) is a d-parameter Brownian sheet. Note that minimax estimation and detection of the
function f in this set-up (but without sparsity assumption) has been studied by Ingster and Suslina
(2007).

3.1. Estimation of ] by thresholding Fourier coefficients. A natural approach for variable selec-
tion consists in computing the Fourier coefficients of the observed signal and in comparing them
to a properly chosen threshold. Since the trigonometric basis is orthonormal and contains the
constant function, it follows that

It is not difficult to show that the converse is also true. Therefore, one has
J={ij€efl,....a}: 3k st. k;#0 and 6c[f] £0}. @)

Our first estimator is based on this characterization of the sparsity pattern. If we denote by yy the
observable random variable Y (@), we have

Ve =0klfl +n712 &y, O =(f,¢x), kez?, (5)

where {Eg; k € Z4} form a countable family of independent Gaussian random variables with zero
mean and variance equal to one. According to this property, yx is a good estimate (unbiased and
with a mean squared error equal to 1/n) of 0 [f] and, therefore, it seems natural to estimate the set
J by the set

]}:{je{l,...,d}: sup |yk|>7t}, ©6)
kez:kj#0
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for some positive parameter A. However, this estimator suffers from two major flows. First, it is
impossible to compute, since for every j an infinite number of comparisons should be performed.
Second, even if we neglect the computational aspect, the estimator J; is definitely not consistent
since for every A and for every j € J, one can find (with probability one) a random variable among
the infinite sequence {& : k; # 0} that exceeds the threshold A in absolute value. Therefore, the
probability of having J, ={1,...,d} is equal to one.

To cope with this issue, we restrict the set of indices for which the comparison with the threshold
is performed. We use the standard notation for the vector norms:

d d
lello=D 105 #0),  lIxlZ=D_Ix;I”, Vpell,00),  lxllo= sup [,
j=1 j=t I=h

for every x € R4. Let us fix an integer m > 0 and denote, for j € {1,...,d},

m,d*

s = {k ezd: kll,<m, |kllo<d* and k;#0 }
Using the sets S],'n_ 40 We define the estimator of J by the formula

Tuntm,)={jef,...,d}: max |yl >2}. ™)
kes’

m,d*

This estimator depends on two parameters, m and A, having natural physical meaning. The pa-
rameter 2 allows to adapt the estimator to the smoothness of the underlying regression function,
while A is the threshold used for discriminating significant coefficients from the noise. Thus, it is
not surprising that in the next theorem, m is a decreasing function of L and A is proportional to
the noise level n—1/2,

THEOREM 1. Let condition [C1(x, L)] be satisfied with some known constants k > 0 and L < 0.
For some real number A > 1, set

5= (2Ad*10§(6md)) 1/2.

m=QLd*/x)*  and

For anyy >0, let us define N(d*,y) as the cardinality of the set {k € Z9" : ||k||§ <rd*&k; #0}. If

d*N(d* 2L/x) log(6md) <K
n ~ 16A

8

then J1(m, ) is a consistent estimator of J and the probability of the event J,(m, ) # ] is upper
bounded by 6d~4"(A-1),

This theorem provides interesting insight to the possibility of consistent recovery of the sparsity
pattern J in the context of fixed intrinsic dimension. In fact, when d* remains bounded from above
when n — oo and d — oo, then we get that P(J1(m,A) = J) =, 4 1 provided that

logd < Const- n. 9)

Although we did not find this result in the statistical literature on variable selection, it can be
checked that (9) is a necessary and sufficient condition for recovering the sparsity pattern J in
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linear regression with fixed sparsity d* and growing dimension d and sample size n. Thus, in the
regime of fixed or bounded d*, the sparsity pattern estimation in nonparametric regression is not
more difficult than in the parametric linear regression, as far as only the consistency of estimation
is considered and the precise value of the constant in (9) is neglected. Furthermore, the estimator
of J which is proved to be consistent under condition (9) does not really exploit the structure of
the Fourier coefficients of the regression function.

3.2. Estimation of ] by group-thresholding. In the regime of growing intrinsic dimension d* —
00, the term N(d*, m?/d*) present in (8) tends to infinity as well. Furthermore, as we show in
Section 4, this convergence takes place at an exponential rate in d*. It is possible then to con-
struct an estimator of J which is consistent under a weaker condition than the one given by (8).
Roughly speaking, we are going to demonstrate that if in (8) the quantity N(d*, m?/d*) is replaced
by its square root, then consistent estimation of J is still possible and can be done by a group-
thresholding procedure.

We now consider an estimator of J that is based on testing subsets of variables. For every {
i{1,...,d*}, we denote by Ped the set of all subsets I of {1,..., d} having exactly £ elements:

pi={1cq,...,} : Card(n)=¢}.

For every multi-index k € Z%, we denote by supp(k) the set of indices corresponding to nonzero
entries of k. To define the blocks of coefficients 8 that will be tested for significance, we introduce
the notation .

S]mJ = {k eZ% : ||kl <m and {j} csupp(k)cC I}.

Using this notation, one easily checks that for every j € J, the following relation holds true: Q; =
1im 00 Y. ks 9,3 > k. Therefore, for every j € J and 7 > 0, and for m large enough, there exists a
m,]

setl e P;* such that Q{M = Zkesj;n'l 0,3 > x7/(L+ 7). This property, combined with the fact that

~i 1
J A 2 2
Qm,[ - (yk - Z)
keS’,‘ny,

J

is an unbiased estimate of Q,, |,

leads us to define an estimator of the set J by

E,n(m,l)={je{1,...,d}: maxlzlmax@j >1}.

(<d* Iep? mel =
where m = (my,...,mg:) N4 and A=(Aq,...,Aq+) € Rff* are two vectors of tuning parameters.

THEOREM 2. Let condition [C1(x, L)] be satisfied with some known constants k > 0 and L < 0.
For some real numbers T >0 and A > 1, set

_ 2y/AN(, m}/t)d*logd +2Ad*logd

me=(L+0)/x)"*  and 2 -

If the condition

8y/AN(d*,(L+7)/x)d*logd + 10Ad*logd o KT
n T L+7
is fulfilled, then the estimator J»,,(m, A) is consistent and P(]Az,n(m, A)# ]) <6d-d"(A-1),

(10)
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In order to fully understand the constraints imposed on d, d* and n by condition (10), we need
to describe the behavior of N(d*,y) when y > 0 is fixed and d* — oco. This will be done in the next
section. Let us simply note here that condition (10) is obviously weaker than condition (8), since
the latter requires that N(d*,y)d*logd is bounded by z up to a multiplicative constant, while the
former requires from the same quantity to be bounded by n?, still up to a multiplicative constant.

Another important observation concerns the number of tuning parameters involved in each
estimation procedure J; , and J5 ,. In fact, Theorems 1 and 2 reveal that the genuine tuning pa-
rameters are not (m, A) or (m, A), but rather ¥ = (L + 7)/x. Indeed, once the value of (L+ 7)/k is
given, the parameters (m,A) and (m, A) can be computed in a unique manner. Since in practice
neither L nor « is known, the optimal value of 1 should be determined from the data. We envisage
to tackle this issue in a future work.

4. Counting lattice points in aball. The aim of the present section is to investigate the prop-
erties of the quantity N(d*,y) that is involved in the conditions ensuring the consistency of the
proposed procedures. Quite surprisingly, the asymptotic behavior of N(d*,y) turns out to be re-
lated to the Jacobi 6 -function. In order to show this, let us introduce some notation. For a positive
number 7, we set

Gi(ds)={kez ki +. . +k2 <yd*}, G )={kez? K+ . +k% <yad* &k =0}

along with Nj(d*,y) = Card61(d*,y) and N,(d*,y) = Card6,>(d*,y). In simple words, N;(d*,7) is
the number of (integer) lattice points lying in the d*-dimensional ball with radius (yd*)"/? and
centered at the origin, while N»(d*,7) is the number of (integer) lattice points lying in the (d* — 1)-
dimensional ball with radius (yd*)!/2 and centered at the origin. With this notation, the quan-
tity N(d*,-) of Theorems 1 and 2 can be written as N;(d*,-) — Nao(d*,-). Using relatively elemen-
tary volumetric arguments, one can check that V(d*)(/7 — 1)4"(d*)?"/2 < Ny(d*,y) < V(d*)(/T +
1) (d*)4"/2, where V(d*) = n@"/2/T(1 + d*/2) is the volume of the unit ball in R4". Furthermore,
similar bounds hold true for N,(d*,v) as well. Unfortunately, when d* — oo, these inequalities are
not accurate enough to yield non-trivial results in the problem of variable selection we are deal-
ing with. This is especially true for the results on impossibility of consistent estimation stated in
Section 5.

In order to determine the asymptotic behavior of N;(d*,y) and N»(d*,y) when d* tends to infin-
ity, we will rely on their integral representation through Jacobi’s 8-function. Recall that the lat-
ter is given by h(z) = Zrezzrz, which is well defined for any complex number z belonging to
the unit ball |z| < 1. To briefly explain where the relation between N;(d*,y) and the 8-function
comes from, let us denote by {a,} the sequence of coefficients of the power series of h(z)4", that
is h(z)4" =3 .o a,z". One easily checks that Vr €N, a, = Card{k € Z%" : k{ +...+ k3. = r}. Thus,

for every y such that yd* is integer, we have N;(d*,y) = Zfig ar. As a consequence of Cauchy’s
theorem, we get :

1
N(d* )= 5— f

2mi

h(z)? dz
zZrd” z(1—-z)

where the integral is taken over any circle |z| = w with 0 < w < 1. Exploiting this representation and
applying the saddle-point method thoroughly described in Dieudonné (1968), we get the following
result.

PROPOSITION 1. Lety >0 be an integer and let|,(z) =logh(z) —ylogz.
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FiG 1. Lattice points in a ball of radius R = yd* = 3.2 in the three dimensional space (d* = 3). Red points are those of
6»(d*,y) while blue points are those of 6,(d*,y)\ 62(d*,y). In this example, N(d*,y) = N(3,1.07)=110.

1. There is a unique solution z, in (0,1) fo the equation |;(z) = 0. Furthermore, the function
Y — 2y is increasing and I’r’(z) > 0.
2. The following equivalences hold true:

. (hEeN®" 1+0(1)
Nl(d ;T)—( Z; ) Zy(l—Zy)(ZI;:(zy)ﬂd*)l/Z,

. h(zﬁ)d* 1+0(1)
N d y == ’
Ad"7) (z§ h(zp)z,(1 — 2,)(21 () md")1/2

as d* tends to infinity.

In the sequel, it will be useful to remark that the second part of Proposition 1 yields

1
log (N1(d*,y)— No(d*, 7)) = d*ly(zy) — Elogd*+cy+o(1), as d*— oo, (11)
. _ h(zy)-1 . . . .
with ¢, =log (h ERETE (zy)). Furthermore, while the asymptotic equivalences of Proposi-

tion 1 are established for integer values of y > 0, relation (11) holds true for any positive real num-
ber 7. In order to get an idea of how the terms z, and |,(z,) depend on 7, we depicted in Figure 2
the plots of these quantities as functions of y > 0.

Combining relation (11) with Theorem 2, we get the following result.

CoOROLLARY 2. Let condition [C1(x, L)] be satisfied with some known constants k >0 and L < co.
Consider the asymptotic set-up in which both d = d, and d* = d, tend to infinity as n — 0o. Assume
that d grows at a sub-exponential rate in n, that isloglogd = o(logn). If

li @ < 2
imsup — < ——
n_mp logn  |l,(zy)

with y = L/k, then consistent estimation of ] is possible and can be achieved, for instance, by the
estimator J»,,.
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Fi6 2. The plots of mappings vy — z, and y — |,(z,). One can observe that both functions are increasing, the first one
converges to 1 very rapidly, while the second one seems to diverge very slowly.

5. Tightness of the assumptions. In this section, we focus our attention on the functional
class X(k, L) of all functions satisfying assumption [C1(x, L)]. In order to avoid irrelevant techni-
calities and to better convey the main results, we assume that ¥ = 1 and denote X; = >(1, L). For
emphasize that ] is the sparsity pattern of the function f that has been used in the data generation
process, we write Jf instead of J. The goal in this section is to provide conditions under which the
consistent estimation of the sparsity support is impossible, that is there exists a positive constant
¢ >0 and an integer n( € N such that, if n > n,,

infsup Pe(J # Jr) > c,
J fex;
where the inf is over all possible estimators of J;. To lower bound the left hand side of the last
inequality, we introduce a set of M + 1 functions f,...,fys such that f, = 0 and f; € X for every
{=1,...,M and use the fact that

EZL

. ~ o1
H]lffSUPPf(]75]f)ZlI}fM;Pfl(]?f]fJ (12)

These functions f; will be chosen in such a way that for each £ > 1 there is a set J; of cardinality d*
such that Jf, = J; and all the sets J,..., J)s are distinct. We can write the inequality (12) as

M
~ 1
infsupPe(J # Jg) > inf— » P, (1 #0), (13)
J fGZL w M fzzl: !

where the inf is taken over all random variables i) taking values in {1,..., M}. The latter inf will be
controlled using a suitable version of the Fano lemma, see Fano (1961). In what follows, we denote
by ¢ (B,Q) the Kullback-Leibler divergence between two probability measures P and Q defined on
the same probability space.

LeEMMA 3 (Corollary 2.6 of Tsybakov (2009)). Let M > 3 be an integer, (¥, .</) be a measurable
space and let Ry, ..., Py be probability measures on (%, .</). Let us set pe y = infy, M1 Z[Ail Py #
() where theinf is taken over all measurable functionsy : X — {1,...,M}. If for some0 < a < 1

1

M
—— > # (P, R) <alogM,
M+1 &
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then
S (M+1)(log(M+1)—log2) 3 1

Pe = MlogM M

1
—-—a>—-—a.
2

We apply this lemma with the choice 2 = X1 U {fo}. It follows from Fano’s lemma that one can
deduce a lower bound on p, s, which is the quantity we are interested in, from an upper bound
on the average Kullback-Leibler divergence between the measures P, and Py, . This roughly means
that the functions f; should not be very far from f, but they should differ one from another (and
from fy) in terms of the sparsity pattern.

5.1. A simple approach for fixed sparsity. One can observe that in the case when d* remains
bounded from above when n — oo, both estimators J; , and J,, are consistent as soon as logd <
cn for every n, where c is a given constant depending on x and L. In this subsection, we show
that if this condition is not verified, then for every estimator, there is at least one function f—
satisfying the assumptions made in the previous section—such that the probability of choosing
the true sparsity pattern does not tend to one.

PrOPOSITION 4.  If for some a € (0,1) the inequality d*(logd —logd*) > a~'n holds true for every
n > 1, then there is a constant ¢ > 0 such that

~ 1
infsupPe(Jn#Jf)>-—a, Vn=>1,
Tn fexp 2

where theinf is taken over the collection of all the estimator Tn.

5.2. Tightness of the conditions for growing sparsity. In the case when the intrinsic dimension
d* = d’ — oo, the condition ensuring the validity of Theorem 2 is weaker than the one ensuring the
validity of Theorem 1. In particular, it follows from Theorem 2 that if the sequences (d*logd)/n and
(N(d*, L+ 7)d*logd)'/2/n, are uniformly in n bounded by some small constant, then the sparsity
pattern estimator fgn is consistent. We have already established in Proposition 4 that the con-
dition on (d*logd)/n is optimal up to constant. The aim is now to show that the condition on
(N(d*, L+ 7)d*logd)Y/2/n is optimal up to constant as well.

The first step consists in proving that one can restrict the set of all estimators J, to the set of
estimators that depend only on the absolute values of the observations. In other words, instead of
applying Lemma 3 to the measures Ps one can do the same with the measures Ps defined as the
probability distribution of the sequence {y,% 1k €7 & ||k||w < n}, where yy is as defined in (5).
The advantage of considering Ps instead of Ps is that, in general, the Kullback-Leibler divergence
between P; and Py is smaller than the Kullback-Leibler divergence between Ps and Py. To state the

next result, we need the additional notation X1, = {f € X1 : sup g ..., [{f, ox)| = 0}.

LEMMA 5. Assume that for some M > 3 and some a € (0, 1) there exist functionsfy,...,fpr inXp
such that

M
% Zx(pfwl_)fo) < alOgM
=1
and the sparsity patterns of functionsfy, forl =1,..., M, are all distinct. Then, the following inequal-
ity holds true:

N 1
infsup Pe(J,#Jf| == —a.
7n fEZL_n ( " ) 2
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With these tools at hand, we are in a position to state the main result on the impossibility of
consistent estimation of the sparsity pattern in the case when the conditions of Theorem 2 are
violated.

THEOREM 3. Assume that L>1 and (;*) > 3. Lety be the largest integer satisfyingy (1+ (h(z,)—
1)_1) < L, where the Jacobi 8 -function h and z, are those defined in Section 4. If for some a €(0,1),

N(d*,yr)d*log(d/d*) _
" > Lot

) (14)

then, for d* is large enough,

—a.

DN | =

infsup P¢ (]N;é ]f) >

] fex

It is worth stressing here that condition (14) is the converse of condition (10) of Theorem 2 in the
case d* — 00, in the sense that condition (10) amounts to requiring that the left hand side of (14)
is smaller than some constant. There is however one difference between the quantities involved in
these conditions: the term N(d*, L+ 7) of (10) is replaced by N(d*,yr) in condition (14). A natural
question arises: how close 7 is to L ? To give a qualitative answer to this question, we plotted
in Figure 3 the curve of the mapping L — 7 along with the bissectrice L — L. We observe that
the difference between two curves is small compared to L. As we discuss it later, this property
shows that the constants—involved in the necessary condition and in the sufficient condition for
consistent estimation of J—are very close, especially for large values of L.

100
|

80

40

20
|

I I I I I I
0 20 40 60 80 100

F1G 3. The curve of the function L — 7, (blue) and the bissectrice (red).

6. Nonparametric regression with random design. So far, we have analyzed the situation in
which noisy observations of the regression function f(-) are available at all points x € [0,1]4. Let us
turn now to the more realistic model of nonparametric regression, corresponding to the case where
the observed noisy values of f are sampled at random in the unit hypercube [0, 1]4. More precisely,
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we assume that n independent and identically distributed pairs of input-output variables (X ;, ¥;),
i=1,...,n are observed that obey the regression model

Y, =f(X;)+o¢,;, i=1,...,n.

The input variables X1, ..., X ,, are assumed to take values in R¢ while the output variables Y;,..., ¥,
are scalar. As usual, the noise £1,..., &, is such that E[¢;|X;] =0, i = 1,..., n; some additional con-
ditions will be imposed later. Without requiring from f to be of a special parametric form, we aim
at recovering the set J C {1,...,d} of its relevant variables. The noise magnitude o is assumed to
be known.

It is clear that the estimation of J cannot be accomplished without imposing some further as-
sumptions on f and the distribution Py of the input variables. Roughly speaking, we will assume
that f is differentiable with a squared integrable gradient and that Py admits a density which is
bounded from below. More precisely, let g denote the density of Py w.r.t. the Lebesgue measure.

[C2] We assume that g(x) =0 for any x ¢ [0, 1]¢ and that g(x) > gmin for any x € [0,1]4.

The next assumptions imposed to the regression function and to the noise require their bound-
edness in an appropriate sense. These assumptions are needed in order to prove, by means of a
concentration inequality, the closeness of the empirical coefficients to the true ones.

[C3(Lwo, L2)] The L*([0,1]9,R, Px) and L?(]0,1]¢,R, Px) norms of the function f are bounded from
above respectively by L, >0 and Ly, i.e.,

Px(x€[0,1]:[f(x)| < Loo) =1 and f f(x)’g(x)dx < Lg.
[0,1]¢

[C4] The noise variables satisfy a.e. E[e’¢|X;] < e*/2 for all ¢t > 0.

We stress once again that the primary aim of this work is merely to understand when it is pos-
sible to consistently estimate the sparsity pattern. The estimator that we will define is intended to
show the possibility of consistent estimation, rather than being a practical procedure for recov-
ering the sparsity pattern. Therefore, the estimator will be allowed to depend on the parameters
gmin, L, k and M appearing in conditions [C1-C3].

6.1. An estimator of ] and its consistency. The estimator of the sparsity pattern J that we are
going to introduce now is the analogue of fl » studied in Section 3. Recall that it is based on the
following simple observation: if j ¢ J then 6y [f] =0 for every k such that k; # 0. In contrast, if j € J
then there exists k € Z4 with k i # 0 such that |0 [f]| > 0. To turn this observation into an estimator
of J, we start by estimating the Fourier coefficients 6 [f] by their empirical counterparts:

PO X;
Op = — Pl ‘)Yi, kezd.
n< g(X)

Then, for every { € N and for any y > 0, we introduce the notation S,,; = {k € Z4 : ||k|, <
m, |lkllo < ¢} and N(d*,y) = Card{k € Z%" : ||k||5 < yd* & k; # 0}. Finally our estimator is defined
by

Tamp={jef,....at: _max [8l>2}, (15)

€S,y kj#0
where m and A are some parameters to be defined later. The notation a A b, for two real numbers
a and b, stands for min(a, b).
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THEOREM 4. Let conditions [C1-C4] be fulfilled with some known constants gmin, L,k and L.
Assume furthermore that the design density g and an upper estimate on the noise magnitude o are
available. Set m = (2Ld*/x)"/? and 2. = 4(o + L,)(d*log(6md)/ng2 . ). If

L2 d*log(6md 128 Lo)2d*N(d*,2L/x)log(6md
Ldlogemd) _ )+ 1280 + LPd"N(d* 2L/)log6md) _ 6

2
n ngmin

then the estimator J(m, A) satisfies P(J(m,A)# J) <3(6md)~7".

If we take a look at the conditions of Theorem 4 ensuring the consistency of the estimator 7,
it becomes clear that the strongest requirement is the second inequality in (16). To some extent,
this condition requires that (d*N(d*,2L/x)logd)/n is bounded from above by some constant. To
further analyze the interplay between d*, d and n implied by this condition, we need an equiva-
lent to N(d*,2L/x) as the intrinsic dimension d* tends to infinity. As proved in the next section,
N(d*,2L/x) diverges exponentially fast, making inequality (16) impossible for d* larger than logn
up to a multiplicative constant.

It is also worth stressing that although we require the Px-a.e. boundedness of f by some con-
stant Ly, this constant is not needed for computing the estimator proposed in Theorem 4. Only
constants related to some quadratic functionals of the sequence of Fourier coefficients 6, [f] are in-
volved in the tuning parameters m and A. This point might be important for designing practical es-
timators of J, since the estimation of quadratic functionals is more realistic, see for instance (Lau-
rent and Massart, 2000, Cai and Low, 2006), than the estimation of sup-norm.

The result stated above can be reformulated to provide also a level of relevance x for the vari-
ables of X making their identification possible. In fact, an alternative way of stating Theorem 4
is the following: if conditions [C1-C4] and L2 d*log(6md) < nL3 are fulfilled, then the estimator
J(m, A)—with arbitrary tuning parameters m and A—satisfies P(J(m,A) # J) < 3(6md)" pro-
vided that the smallest level of relevance k for components X; of X with j € J is not smaller than
8A2N(d*, m?/d*). This statement can be easily deduced from the proof presented in Appendix C.

6.2. Tightness of the assumptions. A natural question is now to check that the assumptions of
Theorem 4 are tight in the asymptotic regimes of fixed sparsity and increasing ambient dimen-
sion, as well as increasing sparsity. In the present subsection, we will only establish an analogue of
Proposition 4, which entails the tightness of assumptions in the case of fixed (or bounded) sparsity.
An attempt to prove a result similar to Theorem 3 was done in (Comminges and Dalalyan, 2011,
Theorem 2). However, the result of (Comminges and Dalalyan, 2011) involves a stringent assump-
tion on the empirical Gram matrix (cf. condition (6)) and, unfortunately, we are unable to prove
the existence of a sampling scheme for which this assumption is fulfilled.

We assume that the errors ¢; are i.i.d. Gaussian with zero mean and variance 1 and we focus our
attention on the functional class X, of all functions satisfying assumption [C1(1, L)]. The goal is
now to provide conditions under which the consistent estimation of the sparsity support is impos-
sible, that is there exists a positive constant ¢ > 0 and an integer n € N such that, if n > n,,

infsupPs(J# Jf) > c,
J fEZL

where the inf is over all possible estimators of J;.

The following simple result shows that the conditions of Theorem 4 are tight in the case of fixed
intrinsic dimension.
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PROPOSITION 6. Let the design X,...,X, €[0, 119 be either deterministic or random. If for some
positive a < (log3 —log2)/log3, the inequality
d*(logd —logd*)
n

>a !

holds true, then there is a constant ¢ > 0 such thatinffn SUPfey;, Pe(J.#Jf)>c.

7. Concluding remarks. The results proved in previous sections almost exhaustively answer
the questions on the existence of consistent estimators of the sparsity pattern in the model of
Gaussian white noise and, to a smaller extent, in nonparametric regression. In fact as far as only
rates of convergence are of interest, the result obtained in Theorem 2 is shown in Section 5 to be
unimprovable. Thus only the problem of finding sharp constants remains open. To make these
statements more precise, let us consider the simplified set-up o = ¥ =1 and define the following
two regimes:

o The regime of fixed sparsity, i.e.,, when the sample size n and the ambient dimension d tend
to infinity but the intrinsic dimension d* remains constant or bounded.

o Theregime of increasing sparsity, i.e., when the intrinsic dimension d* tends to infinity along
with the sample size n and the ambient dimension d. For simplicity, we will assume that
d*=0(d~¢€) for some € > 0.

In the fixed sparsity regime, in view of Theorems 1 and 4, consistent estimation of the sparsity
pattern can be achieved both in Gaussian white noise model and nonparametric regression as
soon as (logd)/n < c., where c, is the constant defined by ¢, = (2°d*N(d*, 2L))_1 for the Gaussian
white noise model (we choose A =2) and

L% grznin )

¢, =min ,
* (2d*Lgo 28(1+ Ly)2d*N(d*,2L)

for the model of nonparametric regression. This follows from the fact that the tuning parameter
m is fixed and that the probability of the error, bounded by 3(6md)?" tends to zero as d — 0o. On
the other hand, by virtue of Propositions 4 and 6, consistent estimation of the sparsity pattern is
impossible if (logd)/n > c*, where c¢* = 2log3/(d*log(3/2)). Thus, up to multiplicative constants
¢« and c¢* (which are clearly not sharp), the results of Theorems 1 and 4 cannot be improved in the
regime of fixed sparsity.

In the regime of increasing sparsity, the results we get in the model of Gaussian white noise are
much stronger than those for nonparametric regression. In the former model, taking the logarithm
of both sides of inequality (10) and using formula (11) for N(d*, L+71)= Ni(d*, L+7)—N»(d*, L+7),
we see that consistent estimation of J is possible when, for some 7 > 0 and for all n, the following
two conditions are fulfilled:
|L+T(ZL+T)d*+%logd*—l—loglogd—Zlogn <cy 17

logd*+loglogd —logn < c}
with ¢, =log7 —1og(2°(L+ 7)) — ¢, and ¢} = logT —log(40(L + 7)). On the other hand, Proposi-
tion 4 and Theorem 3 yield that there are some constants ¢; and 5{ such that it is impossible to
consistently estimate J if either

1
In(zﬂ)d*—l—Elogd*—l—loglogd—Zlogn251, (18)
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FIG 4. The curves of functions L — |(z1) (blue curve) and L — |” (zy,) (red curve).

or
logd* +loglogd —logn > ¢;. (19)

First note that the left hand side of the second condition in (17) is exactly the same as the left hand
side of (19). If we compare now the left hand side of the first condition in (17) with the left hand
side of (18), we see that only the coefficients of d* differ. To measure the degree of difference of
these two coefficients we draw in Figure 4 the plots of the functions L — l(z;) and L — |, (zy,),
with y; being defined as is Theorem 3. One can observe that the two curves are very close espe-
cially for relatively large values of L. This implies that the conditions (17) are tight. A very simple
consequence of inequalities (17) and (18) is that the consistent recovery of the sparsity pattern is
possible under the condition d*/logn — 0 and impossible for d*/logn — oo as n — oo, provided
that loglogd = o(log n).

Still in the regime of increasing sparsity, but for the model of nonparametric regression, we have
proved that consistent estimation of the sparsity pattern is possible whenever
IHT(ZLH)d*—I—%logd*—kloglogd—logn <cy, 20)

logd*+loglogd —logn < ¢},

with ¢, = 2(10g(gmin) —log(12(c + L»))) — co1. and ¢}, = 2log(L2/L«), where ¢,y is the constant ¢,
of (11) evaluated at y =2L. As we have already mentioned, the second condition in (20) is tight, up
to the choice of ¢, in view of Proposition 6. It is natural to expect that the first condition is tight
as well, since it is in the model of Gaussian white noise, which has the reputation of being simpler
than the model of nonparametric regression. However, we do not have a mathematical proof of
this statement.

Let us stress now that, all over this work, we have deliberately avoided any discussion on the
computational aspects of the variable selection in nonparametric regression. The goal in this pa-
per was to investigate the possibility of consistent recovery without paying attention to the com-
plexity of the selection procedure. This lead to some conditions that could be considered a bench-
mark for assessing the properties of sparsity pattern estimators. As for the estimators proposed in
Section 3, it is worth noting that their computational complexity is not always prohibitively large.
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A recommended strategy is to compute the coefficients Ok ina stepwise manner; at each step
K =1,2,...,d* only the coefficients 01 with ||k|jo = K need to be computed and compared with
the threshold. If some @k exceeds the threshold, then all the variables X/ corresponding to nonzero
coordinates of k are considered as relevant. We can stop this computation as soon as the number
of variables classified as relevant attains d*. While the worst-case complexity of this procedure is
exponential, there are many functions f for which the complexity of the procedure will be polyno-
mial in d. For example, this is the case for additive models in which f(x) =f,(x;,)+... +f4+(x;,.) for
some univariate functions fi, ..., fz-.

Note also that in the present study we focused exclusively on the consistency of variable selec-
tion without paying any attention to the consistency of regression function estimation. A thorough
analysis of the latter problem being left to a future work, let us simply remark that in the case of
fixed d*, under the conditions of Theorem 4, it is straightforward to construct a consistent estima-
tor of the regression function. In fact, it suffices to use a projection estimator with a properly cho-
sen truncation parameter on the set of relevant variables. The situation is much more delicate in
the case when the sparsity d* grows to infinity along with the sample size n. Presumably, condition
(17) is no longer sufficient for consistently estimating the regression function. The rationale behind
this conjecture is that the minimax rate of convergence for estimating f in our context, if we assume
in addition that the set of relevant variables is known, is equal n~2/(2+d") = exp(—2log n/(2 + d*)).
If the left hand side of (17) is equal to a constant and loglogd = o(log n), then the aforementioned
minimax rate does not tend to zero, making thus the estimator inconsistent. This heuristical argu-
ment shows that there is still some work to do for getting tight conditions ensuring the consistent
estimation of the regression function in the high dimensional set-up.

Finally, we would like to mention that the selection of relevant variables is a challenging statis-
tical task, which is useful to perform independently of the task of regression function estimation.
Indeed, in we succeed in identifying relevant variables on a data-set having a small sample size, we
can continue the data collection process more efficiently by recording only the values of relevant
variables. This may considerably reduce the memory costs related to data storage and financial
costs necessary for collecting new data. Then, the regression function may be estimated in a more
accurate fashion on the base of this new (larger) data-set.

APPENDIX A: PROOF OF THEOREM 1

To ease notation, we write fl instead of flyn(m, A). On the one hand, if the event
1/2
oy = {maXirkGand* £kl < n l}

is realized, then J¢ C ff (or, equivalently, J; C J). Thus, the probability of J; C J is at least as large
as P(.¢/3). On the other hand, we show below that under condition (8) the event J C fl is at least as
/5, or, equivalently, that the event J ¢ J; is at most as large as ./; . Itis clear that

Ughy={3j st max,y Inl<2]
c {37 eT st 10ulfll < 2+ 07212, Vhes), .}
c ({3ierstioulfi<a+n g0, ves), . }nan)u.af
C {Hj € J s.t. max

ces10klfl <22}u.ay.



18 COMMINGES L. AND DALALYAN A.S.

We show now that the first set in the last line is empty. If this was not the case, then for some value
Jjo we would have Qj, > x and |0 [f]| < 22, for all k € S{;’L 4+ This would imply that

Qioma= Y. Oclf2 <422N(d*,m?/ad").

keS{S’d*
On the other hand,
Qo= Qiomar < D, OclfP<m™ Y > k20clfP<m2Ld"
lkellz=zm llkll2=m jeJ

Remark now that the choice of the truncation parameter m proposed in the statement of the the-
orem implies that Qj, — Qj,,m,q* < k/2. Combining these estimates, we get

Qj, < 0.5k +4A*N(d*, m?/d*),

which is impossible since Qj, > . Thus, we proved that {J ¢ Titc ./, which implies that .</; C
{J € 11}. Therefore,
hc{Jchin{hcli={h=]J}

The cardinality of this set S, 4+ = U; S]m, 4+ admits the simple upper bound:

& rd . 4o (d) ”
Card(sm,d*)=2(s)(2m) <(2m) Zng(md) .
s=0 s=0 °°

This bound is very rough but it will be sufficient for the purposes of the present work. Using the
Bonferroni inequality and the well-known inequalities for the tails of standard Gaussian distribu-
tion, we get

P(i # N <P(I)< Y P(Ek|>n'22)<6(2ma)® e /2 < a4 A-D

keSm_d*

and the theorem follows.

APPENDIX B: PROOF OF THEOREM 2

Let us recall that for every j € {1,...,d}, we use the notation
, A~ 1
i _ 2 i 2
Qm,l_ Z e Qm,I_ Z (yk_;)
kes!, | kes), |
We will also need the notation

jooa 2 s
Rl D0 EG-1 Npg= Y Ok
keS{'nyI kes’,'m,
It is clear that N/ | is drawn from the centered Gaussian distribution with variance Q’ . Further-
more, we have

o =0 +-2nN 4ip (21)
m, ]~ <Xm,I Jn ml "y m I
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This implies, in particular, that for every j & J, QI M=n IR] ; for every I. Therefore, on the event

d*
ﬁ:ﬂ[{mu max |R! 1|<n/lg}ﬂ{max max ( m”) /Qfm,[SZAd*logd}],
=1

Iep? i€fl,...,d} Iep? i€fl,..

the inclusion J¢ C fzc is necessarily true (we use the convention 0/0 = 0). This entails that .s/N{j¢ ¢
J§} =@ and hence

P(#7) P({J° ¢ TEYU{T & Jo})

< P(I)+P(I N L T}).

The term P(.¢/ ) is bounded using standard concentration inequalities for Gaussian and chi-square
random variables. In particular, we will use the following result.

LemMA 7 (cf. Laurent and Massart (2000)). Let (&4,...,Ep) be independent Gaussian random

variables with mean zero and variance 1. For every vector a =(a,...,ap) € RE and for every x > 0,
the following inequality holds true:

D
P(‘Zai(é?— 1)|2llal.vx +2||a||oox) < 2exp(—x).
i=1

We apply this lemma to Rm NE for which we have ||a|| = 1 and ||a||, = ,/N(E,mf/[). Setting
niy=24/N(, ml?/ﬁ)x + 2x and using the union bound, we get

ax dx
P(U{max‘maxd}lRi%I|>n7Lg})§ZP( max |Rl I|>n/lg)

oy - Iept sl = \deptiel

< ¢ Card(P%) max P(|R. |>nA
132_1: ¢ Iepdsiel ( me.T )

<2e ; = <3e~*d",
=1

For x = Ad*logd, we get

d*
P {max max |R >nl} <3q-A-bad*,
(13:LJ1 repf i€fl,... d}| m“' ‘ )

Consider now the noise terms N,‘;U ;- Using the classical bounds on the tails of standard Gaussian
random variables, for any x > 0, we get

(U, o)) < S S ()

(=1 ljepd iel mg I

< Ze’x/ZZE (CZ) <3e*/2gd",
=1



20 COMMINGES L. AND DALALYAN A.S.

Setting x = 2Ad*logd, we bound the last probability by 3d ~(A-1)4" and, therefore,
P(./°) < 64D, (22)

Let us show now that under the conditions of the theorem, .o/ N{J ¢ J»} = @&. We start by rewriting
the event

d* . —~
(¢ L}= U ﬂ {max,epf @fml < )Lg} c U {erfzd*'f < Ad*}.
Jo€J =1 joeJ
This implies that '
dnyghtc | (an{dh, <ra})

Jo€J
In the rest of the proof, m and A will stand for m 4+ and A4+. Following the lines of proof! of Theo-
rem 1, one easily checks that '
Q> kT/(L+7) (23)
for every jy € J. Recall also that
. A B 2
Q{':)I.]:Q{’fly]-i_zR{’z,]-i_ﬁNis,]'

Thus, on the event .</, we have

. . . \2 [2Ad"logd
o (T R e (24)

Elementary computations show that the function x — x2 — 2ax — b is positive when x > 4a? + 2b.
Applying this property to the right hand side of (24), we get that

Qp;—A>0 (25)

provided that

% * 2 *) A% *
Qj°]>4l+8Ad logd :8\/AN(d yms./d*)d*logd +10Ad logd)
mJ = n n

which is satisfied by virtue of (23) and (10). This implies that under the conditions of the theorem,
on the event .«/, we have Q’,fl ;= A, Vjo € J. Consequently, the event .o/ N{J ¢ T2} is impossible.
This completes the proof of the theorem.

APPENDIX C: PROOF OF THEOREM 4
The empirical Fourier coefficients can be decomposed as follows:

oreXi) . o o eRX)
g X0 adme= 2o f

If, for a multi index k, 6, = 0, then the corresponding empirical Fourier coefficient will be close
to zero with high probability. To show this, let us first look at what happens with z’s. We have, for
every real number x,

- .
O =0 +zp, where O =— Z (26)
i3

x2
P(|zkl >x)X1,...,Xn) <exp (—F) Vk €S a
k

Tn Appendix A, this property is established for 7 = L.
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with
X 2 2
Ui — (pk; 3 <
g(X;) g2. n

Therefore, for every k € Sy, 4+, it holds that P(|zk| > x|X1,...,X,) < exp(—ng2, x?/40?). This
entails that by setting A, =(802d*log(6md)/n g2, )"/? and by using the inequalities

Card(Ss,q+) = Z( )(Zm)l < (zm)d*z_
<32md)* <(6md)",

we get

p( max |zk|>/11|xl,...,xn)s > P(Izk|>7Ll|X1,...,Xn)

eS *
md kesmvd*

S Card(Sm’d*)e_”g.Zninl?MOZ S (6md)_d*

Next, we use a concentration inequality for controlling large deviations of 8;’s from 6y ’s. Recall that
in view of the definition 0 = + Z ‘p"(x’)f(X ), we have E(0x) = 6. By virtue of the bounded-

i=1 g(X;)
ness of f, it holds that ISD"(X‘)f(X )| < V2Loo/ gmin. Furthermore, the bound V = Var(“p’gf))f(X i) <
f f2(x) i;léc)) dx <213/g2. combined with Bernstein’s inequality yields
P(10k — 0l > £) < 2exp ni* )
k — Uk = -
2(V+ tﬁLoo/ggmin)
2 42
§2exp(—2gL), Vie>0.
4L2 ~+t Loo & min

Let us define A» =4L» (M) . Then,

min

4L5d*log(6md) )

P(|ék—9k|>ﬂ,z) SZexp(
L2+LOOL (d log6md))1/2

The first inequality in condition (16) implies that the denominator in the exponential is not larger
than 213. Hence,

P( max |ék—9k|>/12)52/(6md)d*.

kGSm’d*

Let .¢/y = {maxes,, ;. |zk| < A1} and .o = { maxges |0k] < A2}. One easily checks that

m,d*
P(J¢ ¢ J¢) <P(f) +P(f) <3/(6md)"".
As for the converse inclusion, we have

P(]¢f)§P(3je]s.t. max |9k|</1)

keS,, 4+ k]

<1{3jesst s 106l <22} + P () +P(.).

€Sy qr :kjF0
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We show now that the first term in the last line is equal to zero. If this was not the case, then for
some value jo we would have Q;, > x and |0k | < 24, for all k € S, 4+ such that k;, # 0. This would
imply that

Qoma™ > 02<42N(d*,m?/d").
kesmvd*:km#o

On the other hand,

Qjo — Qjo,m,a* = Z 9,§§m—2 Z Zk292<_

llkll2=m kllz=m je]

Remark now that the choice of the truncation parameter m proposed in the statement of the
proposition implies that Qj, — Qjy,m,q* < k/2. Combining these estimates, we get

Qi < g +422N(d*, m2/d"),
which is impossible since Q;, > k

APPENDIX D: PROOF OF PROPOSITION 1

Proof of the first assertion.. This proof can be found in Mazo and Odlyzko (1990), we repeat here
the arguments therein for the sake of keeping the paper self-contained. Recall that N;(d*, y) admits
an integral representation with the integrand:

h(z)¥ 1 1 . h(z)
(-2 )exp[d log( )]

zrd" z(1— z)

For any real number y > 0, we define ¢(y) = eVh’(e¥)/h(e) = S = P kze—yk2/2£j§ e~vk
in such a way that

h(e?r) 7 P
h(e—J’)_eTJ’ — Ir(e Yy=0.

By virtue of the Cauchy-Schwarz inequality, it holds that

Zk4e_yk226_yk2 > (Zkze_ykz)z, Vy €(0,00),

implying that ¢’(y) < 0 for all y € (0,00), i.e., ¢ is strictly decreasing. Furthermore, ¢ is obviously
continuous with limy o ¢(y) = +o0 and limy_. ¢(y) = 0. These properties imply the existence
and the uniqueness of y, € (0,00) such that ¢(y,) = y. Furthermore, as the inverse of a decreasing
function, the function y — y, is decreasing as well. We set z, = e ™7 so that y — z, is increasing.

op(y)=r

We also have

. hh — ()2 Ykt —k2)zk > kPzk N2
b(zr)= h_z( )(Zr)Jrlz:Z?z{ : e _( k kzr) H}
Y Zkz Zkzy

=2, (9" )~ d )+ 1} =—229"(r) > 0.
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Proof of the second assertion.. We apply the saddle-point method to the integral representing N;
see, e.g., Chapter IX in (Dieudonné, 1968). It holds that

d*
Nl(d*,r)=i.j€ h(=) dz =ij( fz(1—z)} te?@gz. 27)
lz|=z lz|=zy

2ni | zv? z(1—2z) 2mi
—er

The first assertion of the proposition provided us with a real number z, such that llr(ZT) =0and
I”(zy) > 0. The tangent to the steepest descent curve at z is vertical. The path we choose for inte-
gration is the circle with center 0 and radius z,. As this circle and the steepest descent curve have
the same tangent at z,, applying formula (1.8.1) of Dieudonné (1968) (with a = 0 since |”(z,) is real
and positive), we get that

1 1 27
L Lo led @ g, — 1+ |27
27 tel=2) *Zoni d*l’y/(z,,)

|Z|:Zr

™2 {z,(1— z,)} e E (1 +0(1)),

when d* — 00, as soon as the condition? ®[l,(z) —I,(zy)] < —u is satisfied for some u > 0 and for
any z belonging to the circle |z| = |z;| and lying not too close to z,. To check that this is indeed
the case, we remark that $%t[l,(z)] = log|¥}. Hence, if z = zyei“’ with w € [wy, 27 — wg] for some
wo €]0, [, then

h(z)| 11+2z+23 2"
zr | z;
|1+z|+zy+22k>lzk2
< i
|1+e‘w°zyl+zy+22k>lzk2
< p .

142243 5 2K
142, €90 142,435, 282
for the term Nj(d*, 7). The term N»(d*,y) can be dealt in the same way.

Therefore R[l,(z) — Rl (z,)] < —p with u=log ( ) > 0. This completes the proof

APPENDIX E: PROOF OF PROPOSITION 4

Let M = (;*), fo=0andlet {fi,...,far} be asetincluded in ;. It is clear that

infsup P¢(J,, # Jf) > inf max Pe(J # Jp). (28)

Jn fex T fetfo,fi,..fuld

Let Iy,..., Iy be all the subsets of {1,..., d} containing exactly d* elements somehow enumerated.
Let us define fy, for £ # 0, by its Fourier coefficients {9£ : k € Z4} as follows:

9[_{1) k:(kl)'u)kd):(llelpuwldélg))
=

0, otherwise.

Obviously, all the functions f; belong to X and, moreover, each f; has I; as sparsity pattern. In view
of Lemma 3, if the condition

M

1

MZx(pﬂ,pfo) < alogM (29)
(=1

2R u stands for the real part of the complex number u.
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is satisfied for some a € (0, 1), then the RHS of (28) can be lower bounded as follows:

T 1
inf max P ~1_
7, fetfofiful f(J#Tf) = 5

One easily checks that our choice of f; implies . (Ps,, Pf,) = n||f; — fol|3 = n. Therefore, if alogM =

alog (;*) > n, the desired inequality is satisfied. To conclude it suffices to note that log (5*) is larger
than or equal to d*log(d/d*)= d*(logd —logd*).

APPENDIX F: PROOF OF LEMMA 5

Let us use boldface letters to denote the set of all Fourier coefficients: y = {yx : ||k|loo < n},
0 = {0k : |lkllw < n} and § = {& : ||k|lw < n}. Let us denote by & the set of all sequences ¢ =
{ek : llkllo < n} such that g, € {£1}. We use the notation |y| = {|yk| : [|kllo < n} and e-|y| =
{€k ¥k : |lk]lo < n}. Let now 7 be an arbitrary orthosymmetric probability measure on ¥ ,, i.e., a
probability measure satisfying w(A) = n({£ - 0 : 8 € A}) for every measurable set A and every € € &.
Denoting by P(dy, df) = Ps(dy)n(df) the joint probability distribution of (y,f), for every sparsity

pattern estimator J, we have:

sup Pi(J, # Jf) ZJ Pi(J, # Jp)n(df) = P(J.(y) # Jf)
XLn

fex Ln

= i1 2P (Jaly)# i signiy)= e) - (sign(y) =)
€S

= 2B (Tute Iy # i|signiy) =) - sign(y) =),
£€E

Using the facts that y = 0 + n~1/2&, the distributions of @ and & are orthosymmetric and 8 is
independent of § under P, one easily checks that the random vectors sign(y) and (|y/,|0]) are in-
dependent. Hence, under P, the event sign(y) = ¢ is independent of J,,(¢-|y|) # J; and therefore

fGZL_n

sup Pe(J, # Jr) > %;P(fn(e-w#f) - (sign(y)=¢)

>min P(T,(e-ly#Jr) = _inf P(Tu(y?)#Jr),
ecé J€ Foym
where the last inf is taken over the set %y, of all sparsity pattern estimators depending only on |y|,
or equivalently on y2 =y - y. Thus, at this stage we have proven that the inequality

inf sup Pi(Jn #J5)> _inf j Ps (]Nn(yzﬁ'é ]f) n(df) (30)
ZL,rl

In feX, JE€ Zsym

holds for every orthosymmetric probability measure 7. Now, let us define the so called “least fa-
vorable prior”, that is the probability measure 7 for which the RHS of the last inequality is strictly
positive. Based on the Dirac measures u; = o0f,, { =1,..., M, we define the prior 7 as the orthosym-
metrized version of the probability measure

1 M
modf)=— (df).
(=1
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Strictly speaking, for every measurable subset A of ¥y ;,,

m(A)= il Z”O({ka(fywk)‘ﬁk :feA}).
ecsé k
Injecting this prior in (30) and using the notation f, =), &1 0k [f1¢pr, we get

inf sup Pe(J,#J;) > _inf \ | J P, ]”(y2)7é]f)n°(df)
Tn fesin Jesom 2 43 Yin

inf f Pe(T.(y) # Jr ) moldf)
J€ Fsym Zin

- S ()

The desired inequality follows now by a simple application of Lemma 3.

APPENDIX G: PROOF OF LEMMA 3

Let M = (d*) fo=0andlet {fi,...,f;} be asetincluded in ;. Let Ji,..., Ja be all the subsets of
{1,...,d} containing exactly d* elements somehow enumerated. We apply Lemma 5 to the set of
functions fo,...,fam. Let us define now the Fourier coefficients of f; if, for instance, f; corresponds
to J1 =1{1,...,d*}. We set

O, — N(d*,y)—l/2 if k e 6,(d*y)
k= 0 otherwise

Clearly, the vector 8 = (0 ) is symmetric in the variables {1, ..., d*}. Furthermore, it satisfies
So- ¥ s
k170 keci(y)\62(r)

and

Y KOI=N@ T > K

kezd* ke%’l(d* 7)
=N Z DI
j=1ke6i(d* )
=N(d*,r)‘lﬁ DT
ke6i(d*,r)

< YNl(d*’ Y)/N(d*’ 7)-

The results stated in Section 4 imply that Ni(d*,v)/N(d*, 1) ~a*— 1+ (h(z;) —1)71. According to
the choice of v, for d* large enough, f; € X;. Let us define the functions f,,fs, ..., f), in a similar way
by only changing the sparsity pattern; the function f; has the sparsity pattern J;.

To apply Lemma 3, we need to upper-bound %(I_’f[,f’fo) for every ¢ € {1,..., M}. To ease nota-
tion, we write P; instead of Py,. Using the symmetry and the well-known inequalities relating the
Kullback-Leibler divergence to the y2-distance between probability measures, we have .# (P;, Py) =



26 COMMINGES L. AND DALALYAN A.S.

A (P1,Pg) <log (1+ y2(P1,Py)), where the y, distance between two probabilities P and Q such that

P < Qisdefined by :
dap 2 dP\?
Zz(P,Q)=J(%—1) dQ:f(E) dQ—1.

In view of (Efromovich and Low, 1996, lemme 5.1) , we obtain

(nZNl(d*’ 7’))

L+ @R e (nf 3 0f) =exp (S

<exp ( n’L )
xpl ——-
- N(d*,
kezd”* (%)
The assumption made in the theorem entails that 1\_142;\4:1 K(Pj,Py) < alogM and we conclude
thanks to Lemmas 3 and 5.

APPENDIX H: PROOF OF PROPOSITION 6
Let M = (;*) and let {fo,f1,...,fa} be a set included in X;. Let I1,..., I be all the subsets of
{1,...,d} containing exactly d* elements somehow enumerated. Let us set fo = 0 and define f;, for
{ #0, by its Fourier coefficients {9£ : k € Z9} as follows:

0[_ 1, k:(klr---;kd):(llelp---rldelf))
0, otherwise.

Obviously, all the functions f; belong to X and, moreover, each f; has I; as sparsity pattern. One
easily checks that our choice of f; implies # (P, Ps,) = n|lfy — foll5 = n. Therefore, if alogM =
alog (;*) > n, the desired inequality is satisfied. To conclude it suffices to note that log (;*) is larger
than or equal to d*log(d/d*)= d*(logd —logd*).
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