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Abstract In this work we consider the fluid-structure interaction in fully nonlinear setting,

where different space discretization can be used. The model problem considers finite ele-

ments for structure and finite volume for fluid. The computations for such interaction prob-

lem are performed by implicit schemes, and the partitioned algorithm separating fluid from

structural iterations. The formal proof is given to find the condition for convergence of this

iterative procedure in the fully nonlinear setting. Several validation examples are shown to

confirm the proposed convergence criteria of partitioned algorithm. The proposed strategy

provides a very suitable basics for code-coupling implementation as discussed in Part II.

Keywords fluid-structure interaction · partitioned iterations · nonlinear stability proof.

1 Introduction

Among multi-physics problems that are currently entering the mainstream of scientific re-

search in computational mechanics (e.g. see [34,47]), perhaps the most frequently studied

are the problems of fluid-structure interaction (e.g.. see [3,4,10,11,13,14,16,17,18,19,21,

23,24,28,30,36,42,39,40,41,44,43,45,49,50,52,56,57,55,58,59,61] among others). The

fluid-structure interaction is already an interesting problem in its own right with a vast num-

ber of important applications. However, in this work we use it as the model problem for

testing the novel paradigm of solution procedure based upon the direct coupling of differ-

ent codes developed for a particular sub-problem (i.e. either solid or fluid mechanics) into
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a single code. In particular, we seek to provide the guarantees for the robustness of such a

computation approach in fully nonlinear setting, where implicit schemes are used for each

sub-problem, and we derive (by a formal proof) the convergence criterion for partitioned

scheme iterations.

We note in passing that the current tendencies for solving fluid-structure interaction

problems are mostly oriented towards the monolithic schemes, where both sub-problems

are discretized in space and time in exactly the same manner resulting with a large set of

(monolithic) algebraic equations to be solved simultaneously with no need to distinguish

between the “fluid” and the “structure” part. To provide the unified discretization basis for

monolithic approach, the most frequent choice is to use the stabilized finite elements for

fluids (first proposed by Hughes and co-authors [25], and followed by [14,24,42,30,49,56,

57,54,61]), which can easily be combined with standard finite elements for nonlinear struc-

ture mechanics (e.g. see [7,62,33]); less frequently used possibility is to provide the finite

volume scheme discretization of structure sub-problem [45] and thus provide the monolithic

basis constructed by finite volume method.

We depart from these trends of using monolithic approach, and we set to develop the

partitioned approach for nonlinear fluid-structure interaction. We gain in this manner the

first important advantage of using standard discretization scheme that is the most suitable

for a particular sub-problem. The chosen model problem will consider finite volume method

for fluid and finite element method for structure. We hope in this manner to gain in our

approach generality with mixing different discretization methods, as well as combining the

existing codes already developed for each sub-problems.

We also note that the partitioned approach was the favorite choice of early developments

(e.g. see [5,18,19,32]). A number of those developments were motivated by the efficiency,

which was gained by treating a (large) part of the fluid-structure set of equations by explicit

schemes (see [5,32]). The stability of such an approach is proved mostly for linearized

stability criteria (e.g. see [18,19]), which still leaves the potential danger of appearance of

so-called “arrested” instability (e.g. see [6]), where the disproportionate increase of response

in the unstable regime is stopped by inelastic response of the structure that softens, but not

before a non-negligible error is introduced.

We will eliminate herein any of these problems related to arrested instability by using the

implicit schemes non only for each sub-problem, but also for the partitioned coupling. The

resulting algorithm will thus provide the computational robustness, which will be a great

interest not only for fluid-structure interaction but also for any other multi-physic problem

of current interest where one would like to re-use the available codes for any particular

sub-problem in a more general framework.

The main advantage of code-coupling approach for fluid-structure interaction concerns

the fact that the coupling is limited only to the fluid-structure interface. Therefore, the main

difficulty is reduced to enforcing the interface matching with respect to two different dis-

cretization schemes, finite element versus finite volume, as well as two different time inte-

gration schemes and different time steps. We thus split the presentation of our work in two

parts, pertaining respectively, to time and to space discretization for fluid and for structure

and their matching at the interface. We will deal with the interface matching for different

space discretization in Part II, along with other related issues pertaining to the computational

efficiency enhancements by nested parallelization. In present paper (Part I), we discuss how

to accommodate any particular (implicit) scheme that ensures the unconditional stability

for either fluid or structure motion computation, and how to ensure that the unconditional

stability extends to partitioned solution of the fluid-structure interaction problem.
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The outline of the paper is as follows. In Section 2 we give the theoretical formulation

of the chosen interaction problem of the incompressible fluid and the finite deformation

elastic structure. The partitioned solution algorithm for this interaction problem is presented

in Section 3, and the formal proof of the stability in fully nonlinear setting in Section 4. In

Section 5, we present the results of the benchmark examples and in Section 6, some closing

remarks. The complementary presentation of the space discretization matching issues and

nested parallel computing are discussed in Part II of this paper.

2 Theoretical formulation of fluid-structure interaction problem

We consider the interaction problem of motion of fluid (denoted further with f ) and structure

(denoted with s). For the sake of generality, it is supposed that theses problems are nonlin-

ear and time dependent. This interaction is handled by the classical Direct Force-Motion

Transfer (DFMT, see [18,52]) that can formally be expressed in terms of the corresponding

Steklov-Poincaré operator (see [13]):

Si : H
1
2 (Γ ) → H − 1

2 (Γ )
ui → λ i

with i ∈ { f ,s} (1)

The Steklov-Poincaré operator gives the evolution of dual field λ i for an imposed primal

field ui on the interface space and time domain Γ × [0,T ]. In fact, this operator requires the

computation of the fluid and structure problem on the complete space-time domain, gov-

erned by Navier-Stokes equations for incompressible flow and nonlinear dynamics equa-

tions for structural motion. For the problems of this kind, the Steklov-Poincaré operator

is not available analytically, but rather as the results of numerical approximations. These

results not only depend on the chosen model, material properties and boundary conditions,

but also on discretization techniques, time integration algorithms, discrete equations solvers,

etc.

The interface matching considered in the following is based on two classical mechanics

principles:

(i) Continuity of primal quantities or the perfect matching condition over the interface:

us = u f = u on Γ × [0,T ] (2)

where u denotes the value of the primal variable at the interface. In the continuum set-

ting, the time derivatives of this condition give the equivalent equations for velocity

v = u̇ and acceleration a = v̇:

vs = v f = v; as = a f = a on Γ × [0,T ] (3)

However, as the result of time discretization, these conditions are no longer equivalent.

(ii) Equilibrium of dual quantities or action-reaction principle, which implies:

λ f +λ s = 0 on Γ × [0,T ] (4)

The action-reaction principle in (4) can be reformulated using the Steklov-Poincaré op-

erator defined in (1), resulting with the so-called Steklov-Poincaré formulation (see [13]):

Find: u on Γ × [0,T ] , so that: S f (u)+Ss (u) = 0 (5)
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Using the inverse of the first Steklov-Poincaré operators allows to rewrite the equilib-

rium of dual quantities as the following fixed-point equation that concerns only the unknown

at the interface:

Find: u on Γ × [0,T ] , so that: u = Ss
−1

(
−S f (u)

)
(6)

We note that the inverse of Steklov-Poincaré operator S −1 is no more expensive to compute

than S . The fixed-point equation can be reformulated in order to get a root equation:

Find: u on Γ × [0,T ] , so that: Ss
−1

(
−S f (u)

)
−u = 0 (7)

where all the requested quantities are defined at the interface.

We recall that these Steklov-Poincaré operators are associated with the semi-discrete

form of the continuum equations. Namely, the fluid problem is defined by an ALE formu-

lation (e.g. see [12,31]) of the Navier-Stokes equations. The latter considers the fluid mesh

motion that um is imposed by the motion of the interface u and can be written as:

Rm(um;u) := Kmum−Dmu= 0 (8)

where Dm is a projection/restriction operator and Km governs the extension of the boundary

displacement either by a diffusion process or a pseudo-solid equation (e.g. see [22]). The

fluid flow in this moving domain is described by the semi-discrete Navier-Stokes equations:

R f (v f ,p f ;um) :=

[
M f v̇ f +N f (v f − u̇m)v+K f v f +B f p f − f f

B
T
f v f

]

= 0 (9)

where v f , v̇ f and p f are fluid velocity, its derivative and fluid pressure M f is a (positive

definite) mass matrix, N f is a (non-symmetric) advection matrix, K f is the matrix with

diffusion terms, B f stands for the gradient matrix, and f f is the driving force on the flow. The

discretization process leading to fluid equations of motion and incompressibility constraint

in (9) is carried out by Finite Volume Method [22].

The Finite Element Method [63] is used for the structure sub-problem, resulting with

structural semi-discrete equations of motion:

Rs(us;λ ) :=Msüs + f
int
s (us)− f

ext
s (λ ) = 0 (10)

where Ms is the mass matrix, f int
s is the internal force which is highly non-linear if large

deformation or complex material behavior is used (e.g.. [33]), and f
ext
s is the external force

vector.

Algorithm 1 Steklov-Poincaré operator for fluid: S f

Require: Fluid state variable at time TN

1: Impose displacement of mesh at fluid-structure interface:

um = u on Γ × [TN ,TN+1]
2: Solve mesh intern nodes displacement:

Rm(um;u) = 0 on Ω f × [TN ,TN+1]
3: Solve fluid problem in ALE formulation:

R f (v f , p f ;u f ) = 0 on Ω f × [TN ,TN+1]
4: Get boundary traction force at the interface:

λ =−σ f n on Γ × [TN ,TN+1]

With this notation on hand we can provide the explicit form of the Steklov-Poincaré

operator for fluid and for structure, which can be expressed in terms of Algorithm 1 and 2.
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Algorithm 2 Poincaré-Steklov operator for structure: S −1
s

Require: Solid state variable at time TN

1: Impose boundary traction force at fluid-structure interface:

σ sn = λ on Γ × [TN ,TN+1]
2: Solve structure problem:

Rs(us;λ ) = 0 on Ωs× [TN ,TN+1]
3: Get boundary displacement at the interface:

u = us on Γ × [TN ,TN+1]

3 Discrete force motion transfer (DFMT) – Explicit versus implicit scheme for

interface matching

We assume in the subsequently that each sub-problem (either fluid flow or structural motion)

has been integrated by an implicit time-stepping scheme (wide variety is available in [22,

33]). We are thus only left with integrating the interface matching unknowns.

Each of Steklov-Poincaré operators involves the complete domain for either fluid and

solid, and furthermore, each results in a set of nonlinear equations to be solved. Therefore,

an iterative scheme has to be defined to compute the solution of the coupled problem. To

that end, one can use any of the formulation in (5), (6) or (7) and corresponding iterative

schemes, such as: i) the one in (6) with Picard like iterative schemes [59,41]; ii) the one

in (7) with Newton [44,21] or quasi-Newton [26,56,11] iterations; iii) the one in (5) with

non-linear Richardson strategy [13,20].

3.1 Generalized Conventional Serial Staggered (GCSS) algorithm

This explicit approach, yet called weak coupling, tries to provide the best possible approx-

imation of the interface matching solving only once Steklov-Poincaré operator for each

sub-problem and in each time step. More precisely, we consider the evolution of the fluid-

structure interaction problem in a time-interval (or window) [TN ,TN+1] of size ∆ t. The idea

is to solve at each time step a single Picard-iteration of the fixed-point equation in (6):

uN+1 = Ss
−1

(
−S f (uN)

)
(11)

However, this leads to bad conservation properties at the interface, which can be improved

by the addition of a better predictor P . This results with the Algorithm 3.

Algorithm 3 Generalized Conventional Serial Staggered

1: Given: initial time T = T0, final time Tmax, window size ∆ t, initial interface displacement u0.

2: while T < Tmax do

3: Predict displacement: uP
N+1 = P(uN , u̇N ,uN−1, . . .)

4: Solve problem f: λ N+1 = S f (u
P
N+1)

5: Solve problem s: uN+1 = Ss(λ N+1)
6: N← N +1 and T ← T +∆ t

7: end while

Note that we do not impose the way the time integration is performed, but only that

the fluid and the structure part be collocated at the end of the same time windows. When

considering equal time step size for fluid and structure, this Direct Force-Motion Transfer



6

algorithm is named Conventional Serial Staggered (DFMT-CSS) (see [17,18]). We can also

consider the so-called Sub-cycled Conventional Staggered Scheme (DFMT-SCSS) where

time steps selected for integration of fluid flow and structure motion are not the same size.

Usually, the characteristic time scale of the fluid is smaller, and thus we consider integration

for the fluid part with many small time steps on the window [TN ,TN+1].
The interface displacements for the structure at time TN+1 is therefore uN+1 while for the

fluid, the final value is set by the predictor as a function of uN . For that reason, the interface

matching condition at TN+1, cannot be fulfilled by this explicit scheme and we obtain:

us,N+1 = uN+1 6= u f ,N+1 = uP
N+1 (12)

Moreover there is no reason that the interface matching condition be fulfilled for the ve-

locity. As a result, an energy error is introduced by this kind of exchange at the interface

which can be estimated by computing the energy transfer to the interface for both fluid and

structure [50,16].

The first analysis of this explicit DFMT partitioned strategy [19] printed out the upper

limit on the time step size beyond which each numerical simulation of structure motion

explicitly coupled to fluid flow diverges. This upper limit depends on the fluid/structure

density ratio and on the speed of sound in the fluid medium. This criterion directly applied to

incompressible flows with infinite wave speed, predicts immediate instability for any chosen

time step. The instability phenomenon are noticed in [59,24,41,46]. and a simplified model

is proposed [10] for their prediction. The instability of explicit interface matching is clearly

shown by the numerical examples in Sec. 5.

3.2 Direct Force-Motion Transfer Block Gauss–Seidel (DFMT-BGS) algorithm for

implicit matching

By enforcing the continuity of primal variables at the interface we can eliminate the energy

errors that characterize the explicit interface matching. This ought to be done by iterating on

the following residual to reduce its value below the chosen tolerance:

rN+1 := us,N+1−u f ,N+1 ≃ 0 ≤ TOL (13)

t

t

∆ ts

∆ t fP f

Ps

TN TN+1

×(kN)

λ |[TN ,TN+1]

u|[TN ,TN+1]

Fig. 1 Block Gauß-Seidel coupling algorithm for fluid (P f ) structure (Ps) interaction problems; this itera-

tive scheme is applied (kN) times until convergence on a window [TN ,TN+1].
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In this way we obtain an implicit algorithm requiring more than one iteration to enforce

the interface matching condition. The chosen order of iterations, as presented in Fig. 1,

corresponds to the Block-Gauß-Seidel algorithm for fluid-structure interaction problem. We

also show in Fig. 1 that not only the value at synchronization points Tn or Tn+1, but also

the interpolated evolution of variables have to be exchanged in the entire time-interval t ∈
[Tn,Tn+1].

Contrary to explicit algorithms which generate spurious energy at the interface, the

present implicit interface matching algorithm enforce the same evolution of the primal vari-

ables at the fluid-structure interface. In other words, an iterative solution for equation (6) is

performed by using the Picard iteration:

u
(k+1)
N+1 = G

(

u
(k)
N+1

)

; G = Ss
−1 ◦−S f (14)

where S f and Ss are Steklov-Poincaré operators for fluid and structure defined previously.

The Picard iterations will continue until convergence of interface residual is achieved:

r
(k)
N+1 = u

(k)
s,N+1−u

(k)
f ,N+1 = G

(

u
(k)
N+1

)

−u
(k)
N+1 (15)

Such a Block-Gauß-Seidel algorithm with implicit interface matching, further denoted

as DFTM-BGS, can be presented as a natural generalization of the explicit algorithms. We

can thus write:

Algorithm 4 Direct Force-Motion Transfer Block-Gauß-Seidel

1: Given: initial time T = T0, final time Tmax, window size ∆ t, initial interface displacement u0.

2: while T < Tmax do

3: (k) = 0

4: Predict displacement: u
(0)
N+1 = P(u

(kmax)
N , u̇

(kmax)
N ,u

(kmax)
N−1 , . . .)

5: repeat

6: Perform Picard iteration: G

(

u
(k)
N+1

)

7: Compute residual: r
(k)
N+1 = G

(

u
(k)
N+1

)

−u
(k)
N+1

8: Update interface primal variable: u
(k+1)
N+1 = u

(k)
N+1 + r

(k)
N+1

9: do (k)← (k)+1

10: until ‖r(k−1)
N ‖ ≥ TOL

11: N← N +1 and T ← T +∆ t

12: end while

As illustrated in Figure 2, this fixed-point algorithm based on Picard iterations for the

time has the main drawback that the search directions for u and λ variables do not exploit

any information from the fixed-point function G nor the Steklov-Poincaré operators S f and

Ss. Therefore, quite a few iterations may be needed to reach the convergence.

In order to improve the convergence of the DFMT-BGS method, we can use a more

accurate update:

u
(k+1)
N+1 = u

(k)
N+1 +H r

(k)
N+1 (16)

The choice of matrix H above should be made to improve the method convergence. Our

favorite choice for constructing H is using a secant methods which can keep the cost of each

iteration as low as possible. In particular, an approximation of H by a scalar ω employed

herein with optimal value at each iteration ω(k) obtained by Aitken’s relaxation. For such a

choice the convergence rate is able to reach α ≃ 1.6.
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e(k)

uu(k−2) u(k−1) u(k) u(k+1)

λ

λ (k−1)

λ (k)

λ (k+1)

−S f

Ss

Fig. 2 Implicit for interface matching by non-linear Block Gauß-Seidel.

We note in passing that various other improvements for constructing H matrix have

been attempted (e.g. see [40,43,59,11]), but we did not find them indispensable for the

studies presented herein where dynamic Aitken relaxation proved to be sufficient. Moreover,

for such a choice we are able to provide the formal proof of stability of DFMT-BGS in fully

nonlinear framework.

4 Proof of stability and convergence of DFMT-BGS

4.1 Reformulation of the fluid-structure interaction problem in a Differential Algebraic

Equation framework

The main goal of this section is to confirm the stability of the partitioned approach for

coupled fluid-structure interaction problems with implicit interface matching based upon

the DFMT-BGS iterative scheme. At the outset, we assume that the approximate choice of

stable and accurate integration schemes is made to solve for fluid flow and structure motion1.

We can thus focus only upon the interface matching computations. To that end, we will

first recast the DFMT-BGS algorithm formulated in the general framework of differential-

algebraic equations (DAE). This allows to follow in the footsteps of the proof of nonlinear

stability of the partitioned algorithm provided in [2].

The first sub-problem pertaining to the fluid flow on a moving domain, discretized by

Finite Volume Method, is defined jointly by equations (8) and (9), which can be written as:

0 = r f (x f (t),xs(t),y f (t),λ (t))

=





Kmum−Dmus

M f v̇ f +N f (v f − u̇m)v+K f v f +B f p f − f f −D
T
f λ

B
T
f v f




(17)

In (17) above v f is fluid velocities, and um is the mesh displacements, which are gathered

together in x f = (v f ,um), while their time derivatives as well as the pressure field are placed

1 It is also assumed that fluid flow and structure motion are computed by the corresponding software

products, to be coupled for solving a fluid-structure interaction problem; the details of software coupling are

discussed in Part II of this paper.
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in y f = (v̇ f ,p, u̇m). The forces at the interface are denoted with λ and matrix D f is the re-

sult of their interpolation across the interface from the fluid side. The residual r f gathers

the mesh motion for ALE, the coupled discretized momentum equation and incompressibil-

ity condition. Rewriting the incompressibility condition using the acceleration in order to

reduce the order of the DAE associated with incompressible fluid problem leads to:

0 = r f (x f (t),xs(t),y f (t),λ (t))

=






Kmu̇m−Dmu̇s

M f v̇ f +N f (v f − u̇m)v+K f v f +B f p f − f f −D
T
f λ

−BT
f M
−1
f

(

N f (v f − u̇m)v+K f v f +B f p f − f f −D
T
f λ

)






(18)

Considering now the structure motion, we will gather the primal variables, the solid

displacements us and velocities u̇s, in the same vector xs = (us, u̇s), whereas the acceleration

is denoted as ys = üs. The residual form of the equation of motion can then be written:

0 = rs(xs(t),x f (t),ys(t),λ (t)) (19)

The last equation can be written explicitely as:

rs(xs(t),x f (t),ys(t),λ (t)) :=
[

Msüs + f
int
s (us)− f

ext
s −D

T
s λ

]

(20)

where the Ds indicates the force distribution at the interface on the structure side.

The interface matching equation, which accounts for interaction, can be stated in terms

of acceleration:

0 = rλ (x f (t),xs(t),y f (t),ys(t)) :=−Dsüs +D f v̇ f (21)

With this notation in hand, the proposed DFMT-BGS algorithm with implicit interface

matching can be stated as follows: first solve the fluid sub-problem together with the conti-

nuity equation at the interface:

∂tx f
(k) = fr f

(x f
(k),xs

(k−1),y f
(k))

0 = r f (x f
(k),xs

(k−1),y f
(k),λ (k))

0 = rλ (x f
(k),xs

(k−1),y f
(k),ys

(k−1))

(22)

and then solve the structure sub-problem with imposed forces at the interface:

∂txs
(k) = frs(x f

(k),xs
(k),ys

(k))

0 = rs(x f
(k),xs

(k),ys
(k),λ (k))

(23)

4.2 Error propagation, stability and convergence of DFMT-BGS algorithm

In the examples to follow we solved each nonlinear sub-problem by a dedicated solver (e.g.

conserving algorithm for the structure (see for instance [35]), segregated approach like PISO

for the fluid part [22]). The final stability results is valid in a more general context as long

as sub-problem computation remains stable and convergent. Thus we only need to confirm

the convergence of the iterative DFMT-BGS procedure for the interface matching.

We introduce the following notations: the subscript N for the restriction of the function

of time t to the interval [TN−1,TN ], h = TN − TN−1, the superscripts (k) for the iteration

counter of the DFMT-BGS for interface matching procedure and the ∆ symbol denoting
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the distance of numerical approximation to the exact solution, ∆x
(k)
N = x

(k)
N − x⋆. Moreover,

the same time steps for each sub-problem of the fluid-structure interaction are not needed;

for instance the fluid problem can be solved with many smaller time steps as opposed to a

single time step for structure. The time interpolation of the evolution on the window has to

be considered a priori.

The stability of DFMT-BGS operator split procedures is mainly governed by error prop-

agation from one window, say N, to the following N + 1. In [2], a stability study of the

partitioned approach for differential-algebraic systems of equations (DAE) that character-

ize the multi-body system dynamics is given. The stability proof given in [2] considers the

case Lagrange multipliers or dual, rather than primal variable values are exchanged at the

interface from one iteration to the next. In [1], the stability criterion corresponding to the

block-Gauß-Seidel algorithm such as the one used herein is given [44], but without any

proof. In the following a detailed proof for DFMT-BGS algorithm that cannot be found in

the literature for the fluid-structure interaction context is given.

We note in passing that the same kind of results can be used for other coupled problems

where the time integration schemes of the sub-problems are different, such as thermome-

chanics [37] or with different time scales for mechanics and thermal component as well as a

generalized non-linear operator split for problems with internal variables [38]. However, the

proof given herein is entirely original, as the dual quantities are exchanged in each iteration.

The main result can be stated as follows:

Theorem 1 There exists C ∈ ❘+ such that for all (k)> 1

max
n

(

‖∆x f
(k)
n
‖+‖∆xs

(k)
n ‖+‖∆y f

(k)
n
‖+‖∆ys

(k)
n ‖+‖∆λ (k)

n ‖
)

<

C ·max
n

(

µk−2
(

‖∆x f
(0)
n
‖+‖∆xs

(0)
n ‖

)

+µk−1‖∆ys
(0)
n ‖

)

where: µ = α +O(H) and α the contraction constant characterizing the operator split

procedure employed to solve this nonlinear interaction problems, which can be written as:

α = max
n

∥
∥
∥
∥

[

∂ys
rλ

[
∂ys

rs

]−1
∂λ rs

]−1

∂y f
rλ

[

∂y f
r f

]−1

∂λ r f

∥
∥
∥
∥

The main condition on contraction property with α < 1 will guarantee the convergence

of the operator split procedure for the given time window when (k) −→ ∞. We set now to

apply this stability criterion to the DFMT-BGS for fluid-structure interaction presented in

the previous section. We thus obtain:

(i) Fluid sub-problem on a moving domain discretized with FV method:

∂y f
r f =





Km 0 0

∂u̇m(N f (v f − u̇m)v) M f B f

−BT
f M
−1
f ∂u̇m(N f (v f − u̇m)v) 0 −BT

f M
−1
f B f



 (24)

and

∂λ r f =





0

−DT
f

B
T
f M
−1
f D

T
f



 (25)

(ii) Matching condition that corresponds to the continuity at the interface:

∂ys
rλ =−Ds; ∂y f

rλ =
[
0 D f 0

]
(26)



11

(iii) Structural problem solved with a FE method:

∂ys
rs =Ms; ∂λ rs =−DT

s (27)

Combining the given corresponding values of Jacobian computed for all these equations

leads to the corresponding value of the contraction constant α for fluid-structure interaction,

that can be written after simplification:

α = max
n

∥
∥
∥
∥
∥

[

∂ys
rs

]−1

∂λ rs

[

∂y f
rλ

[

∂y f
r f

]−1

∂λ r f

]−1

∂ys
rλ

∥
∥
∥
∥
∥
=

max
n

∥
∥
∥
∥
∥
M
−1
s D

T
s

[

D fM
−1
f

(

1+B f

(

B
T
f M
−1
f B f

)−1

B
T
f M
−1
f

)

D
T
f

]−1

Ds

∥
∥
∥
∥
∥

This criterion shows that the numerical computation is highly linked to the material

properties and more generally to the model chosen for the fluid and the structure sub-

problems. As the first approximation an estimate for α can be provided by the mass ratio

between the fluid M f and the solid part Ms weighted by some geometrical conditions for the

field transfer defined in D f and Ds. When the mass ratio increase, the scheme can become

unstable. The terms in B f show the influence of the incompressibility condition, resulting in

the stability domain reductionand through the added-mass effect (see [24,23,41]). In order

to the domain of stability for iterative DFMT-BGS procedure, Aitken’s relaxation can be

used as presented in the previous section. The stability of such modified algorithm can then

be proved following the recepies from [2] for pre-conditioned algorithm. This proof will not

be given herein, but only the corresponding improvement shown in the numerical examples.

4.3 Proofs for stable error propagation

The proof of the stability error propagation theorem is given as follows:

(i) The error bound for one iteration of the operator split procedure for an approximation

in the neighborhood of the solution is given in Lemma 1.

(ii) In Lemma 2, a recursive application of Lemma 1 gives a bound for (k) iteration of the

operator split procedure.

(iii) The proof is concluded by the application of the two Lemmas with suitable arguments.

Lemma 1 Consider Uγ0
a neighborhood of the solution

(
x f

⋆,xs
⋆,ys

⋆
)
:

Uγ0
=
{(

x f ,xs,ys

)
∣
∣
∣

∥
∥x f − x f

⋆
∥
∥+‖xs− xs

⋆‖+‖ys− ys
⋆‖6 γ0

}

There exists (C,H0,γ0) ∈ ❘3
+ such that:

∀
(

(x f
(0),xs

(0),ys
(0)),(x̃ f

(0), ỹs
(0), λ̃

(0)
)
)

∈Uγ0

2, ∀H < H0,





‖δx f
(1)‖

‖δxs
(1)‖

‖δys
(1)‖



6





CH CH CH

CH CH CH

C C α̂ +CH









‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖



+





‖δx f
(0)(Tn)‖

‖δxs
(0)(Tn)‖
0





with δ denoting the distance between two approximations, i.e. δx(k) = x(k)− x̃(k) and

α̂ = α +O(1)
(

‖∆x f
(0)‖+‖∆xs

(0)‖+‖∆xs
(0)‖+‖∆ x̃ f

(0)‖+‖∆ x̃s
(0)‖+‖∆ x̃s

(0)‖
)
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Proof (of Lemma 1) By inserting (x f
(0),xs

(0),ys
(0)) ∈ Uγ0

in the proposed algorithm, we

obtain the evolution equation of the fluid sub-problem (22) as the first step of the staggered

scheme:






∂tx f
(1) = fr f

(x f
(1),xs

(0),y f
(1))

0 = r f (x f
(1),xs

(0),y f
(1),λ (1))

0 = rλ (x f
(1),xs

(0),y f
(1),ys

(0))

with x f
(1)(TN) = x f

(0)(TN)

(28)

For the second sub-system in (23), the evolution of the structure sub-problem under the

loading λ (k)
is recovered:

{
∂txs

(1) = frs(x f
(1),xs

(1),ys
(1))

0 = rs(x f
(1),xs

(1),ys
(1),λ (1))

with xs
(1)(TN) = xs

(0)(TN)

(29)

The same kind of evolution is found for any other initial value in the neighborhood of the

solution: (x̃ f
(0), x̃s

(0), ỹs
(0)) ∈Uγ0

.

With a regularity assumption which guarantees that fr f
and frs satisfy Lipschitz condi-

tions w.r.t. to their arguments (x f ,xs,y f ,ys),
2, we can obtain the following bound after one

time integration over the window N +1 for δx f
(1) = x f

(1)− x̃ f
(1) and δxs

(1) = xs
(1)− x̃s

(1):

{
‖δx f

(1)‖ 6 ‖δx f
(0)(TN)‖+O(H)(‖δx f

(0)‖+‖δy f
(1)‖)

‖δxs
(1)‖ 6 ‖δxs

(0)(TN)‖+O(H)(‖δxs
(0)‖+‖δys

(1)‖) (30)

Our goal is now to provide a bound to the difference in the primal unknown that will

be imposed at the next iteration ‖δys
(1)‖. For a fixed time t, the algebraic equations are

summarized to F(0) = F(1) = 0 with:

F(θ) =






r f (x f
(1),θ ,xs

(0),θ ,y f
(1),θ ,λ (1),θ )

rλ (x f
(1),θ ,xs

(0),θ ,y f
(1),θ ,ys

(0),θ )

rs(x f
(1),θ ,xs

(1),θ ,ys
(1),θ ,λ (1),θ )




 , θ ∈ {0,1} (31)

where xθ can be written as xθ = (1−θ)x+θ x̃.

The identity F(1)−F(0) =
∫ 1

0 F ′(θ)dθ = 0 further gives:

∫ 1

0

independent of θ
︷ ︸︸ ︷








∂y f
r f ∂λ r f 0

∂y f
rλ 0 0

0 ∂λ rs ∂ys
rs









δy f
(1)

δλ (1)

δys
(1)



+





0

∂ys
rλ

0



δys
(0)



dθ

+ O(1)
(

‖δxs
(0)‖+‖δx f

(1)‖+‖δxs
(1)‖

)

= 0

In the equation above the arguments x f
(1) and xs

(1) of the Jacobian that are placed in the

neighborhood Uγ0
of size O(γ0) of the solution (x f

⋆,xs
⋆) are neglected. If γ0 is sufficiently

2 Regarding this regularity assumption, see the remark at the end of this proof.
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small, then we can easily solve the previous equation, provided the algebraic equations give

a non-singular matrix3.

−





∂y f
r f ∂λ r f 0

∂y f
rλ 0 0

0 ∂λ rs ∂ys
rs





−1



0

∂ys
rλ

0





=





[

∂ys
rs

]−1

∂λ rs

[

∂y f
rλ

[

∂y f
r f

]−1

∂λ r f

]−1

∂ys
rλ







(32)

thus the contractivity coefficient α can be defined as:

α = max
n

∥
∥
∥
∥
∥

[

∂ys
rs

]−1

∂λ rs

[

∂y f
rλ

[

∂y f
r f

]−1

∂λ r f

]−1

∂ys
rλ

∥
∥
∥
∥
∥

Using this inverse calculation in (32) gives the following bounds for the difference be-

tween the two coupled problems after one iteration:

‖δy f
(1)‖ 6 O(1)

(

‖δx f
(0)‖+‖δxs

(0)‖+‖δys
(0)‖+‖δx f

(1)‖+‖δxs
(1)‖

)

‖δys
(1)‖ 6 α̂‖δys

(0)‖+O(1)
(

‖δx f
(0)‖+‖δxs

(0)‖+‖δx f
(1)‖+‖δxs

(1)‖
)

where:

α̂ = α +O(1)
(

‖∆x f
(0)‖+‖∆xs

(0)‖+‖∆λ (0)‖+‖∆ x̃ f
(0)‖+‖∆ x̃s

(0)‖+‖∆λ̃
(0)‖

)

Inserting the inequality above in the Lipschitz condition in (30) gives:

‖δx f
(1)‖ 6 O(H)

(

‖δx f
(0)‖+‖δxs

(0)‖+‖δys
(0)‖

)

+‖δx f
(0)(TN)‖

‖δxs
(1)‖ 6 O(H)

(

‖δx f
(0)‖+‖δxs

(0)‖+‖δys
(0)‖

)

+‖δxs
(0)(TN)‖

‖δys
(1)‖ 6 (α̂ +O(H))‖δy f

(0)‖+O(1)
(

‖δx f
(0)‖+‖δxs

(0)‖
)

Rewriting the equation above in matrix form completes the proof of Lemma 1.

Lemma 2 Provided that the assumptions of the previous Lemma are satisfied and assume

that α̂ < 1 and C > α̂ , one can write:

∃Ĉ ∈ ❘+ such that ∀k > 1,∀H 6 H0





‖δx f
(k)‖

‖δxs
(k)‖

‖δys
(k)‖



 6





1+ĈH‖δx f
(0)(TN)‖

1+ĈH‖δxs
(0)(TN)‖

Ĉ



+





Ĉ(4Ĉ+1)H µ̂k−2 Ĉ(4Ĉ+1)H µ̂k−2 4ĈH µ̂k−1

Ĉ(4Ĉ+1)H µ̂k−2 Ĉ(4Ĉ+1)H µ̂k−2 4ĈH µ̂k−1

4Ĉµ̂k−1 4Ĉµ̂k−1 µ̂k +(µ̂− α̂)k









‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖





with µ̂ = α̂ + 2CH
α̂
2C +
√

H

3 This requires non-singular Jacobians, see [2,8] for more details
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Proof (of Lemma 2) Although the successive values of (x f
(k),xs

(k),ys
(k)) remain in the

neighborhood Uγ0
of the solution, Lemma 1 shows that iteration error is mainly governed

by the matrix:

J =





CH CH CH

CH CH CH

C C α̂ +CH



 (33)

Recursive application of Lemma 1 leads to:





‖δx f
(k)‖

‖δxs
(k)‖

‖δys
(k)‖



6 Jk





‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖



+
k−1

∑
i=0

Ji





‖δ∆x f
(0)(TN)‖

‖δ∆xs
(0)(TN)‖
0



 (34)

Hence, the goal is to express in a relatively simple way the bounds for the elements of

Jk and for the first column of ∑Ji. The classical method used to obtain such bounds seeks to

first transform the matrix into corresponding diagonal form J and then to bound the power

of the eigenvalues. This leads to tedious but straightforward calculations; for more details

the reader is invited to consider the Lemma 3.2. in [2].

Proof (of Theorem 1) The errors on the interest variables like εx f ,N on x f for the fluid part,

εxs,N on xs for the structure part, and εys,N on ys used for the coupling, are split in two terms:

e.,N+1 representing error propagation from one window N (t ∈ [TN−1,TN ]) to the next N +1

(t ∈ [TN ,TN+1]); d.,N+1 corresponds to local error contribution on the window of interest

N +1.

The proof is organized as follows: applying Lemma 2 with suitable arguments, yields

estimates for error propagation e (see proof (i)) and local error d (see proof (ii)). Then

these estimates are combined to bounds set for the global errors ε (see proof(iii)). We can

then show by induction that the global error bound is always verified (see proof (iv)). The

constants µ and α are explicitly stated at the end of the proof of Theorem 1 (v).

(i) Estimate of propagation error contribution is the first part of the proof, where Lemma 2

with the following suitable arguments is applied:





x̃ f
(0)

x̃s
(0)

ỹs
(0)



←−






x f
(kmax)
N

xs
(kmax)
N

ys
(kmax)
N




 and





x f
(0)

xs
(0)

ys
(0)



←−





x f
⋆
N

xs
⋆
N

ys
⋆
N



 (35)

The symbol, ‘←−’ indicates the initial guesses (obtained with zero-th, first or second

order predictors) from one window N to the next one N+1. For instance, in the simplest

predictor is the constant function that leads to an error of size O(H):

(x f
(0)
N+1,xs

(0)
N+1,ys

(0)
N+1) = (x f

(kmax)
N ,xs

(kmax)
N ,0)

The values (x f
(kmax)
N ,xs

(kmax)
N ,ys

(kmax)
N ), in equation (35) above, obtained by numerical

integration on the previous window N, can be considered as the best representation of

the exact solution of the problem (x f
⋆
N
,xs

⋆
N ,ys

⋆
N) on this window. The choice of initial

values (35) gives by definition the propagation error in the N + 1-th windows for the

(k)-th iteration: δx f
(k) = ex f ,N+1, δxs

(k) = exs,N+1 and δys
(k) = eys,N+1.
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It is assumed that the chosen initial guess operator←− satisfies Lipschitz condition:

∃L∗ ∈ ❘ such that







‖∆x f
(0)‖ 6 L∗‖εx f ,N‖

‖∆xs
(0)‖ 6 L∗‖εxs,N‖

‖∆ys
(0)‖ 6 L∗‖εys,N‖

(36)

It will extrapolate x f and xs continuously from one window to another: ‖δx f
(0)(TN)‖6

‖εx f ,N‖ and ‖δxs
(0)(TN)‖6 ‖εxs,N‖. Therefore, the application of Lemma 2 to the (k)-

th iteration on window N with α < 1 and a window size H small enough so that µ < 1

leads to: 



‖ex f ,N+1‖
‖exs,N+1‖
‖eys,N+1‖



6





1+C∗1H 1+C∗1H C∗1H

1+C∗1H 1+C∗1H C∗1H

C∗1 C∗1 α∗









‖εx f ,N‖
‖εxs,N‖
‖εys,N‖



 (37)

with C∗1 ∈ ❘+ and α∗ := L∗(µ̂k +(µ̂− α̂)k).
(ii) Estimate of local error contribution consists again in applying Lemma 2 with suitable

arguments:




x̃ f
(0)

x̃s
(0)

ỹs
(0)



←−





x f
⋆
N

xs
⋆
N

ys
⋆
N



 and





x f
(0)

xs
(0)

ys
(0)



=





x f
⋆
N+1

xs
⋆
N+1

ys
⋆
N+1



 (38)

Since the solution of the problem (x f
⋆
n
,xs

⋆
n,λ

⋆
n) is a fixed-point of the iteration sequence,

the local error contributions are measured by (δx f
(k),δxs

(k),δys
(k))= (dx f ,N+1,dxs,N+1,dλ ,N+1).

Furthermore, the use of the solution of the problem as the initialization of the iterative se-

quence yields (δx f
(0),δxs

(0),δys
(0)) = (∆x f

(0),∆xs
(0),∆ys

(0)), x̃ f
(0)(TN)−x f

(0)(TN) =

0 and x̃s
(0)(TN)− xs

(0)(TN) = 0. Thus the application of Lemma 2 then gives:





‖dx f ,N+1‖
‖dxs,N+1‖
‖dys,N+1‖



6

(

µ̂k−2
(

‖∆x f
(0)‖+‖∆xs

(0)‖
)

+µ̂k−1‖∆λ (0)‖
)





C∗2H

C∗2H

C∗2





(39)

with a positive constant C∗2 .

(iii) these estimates are combined with the bounds set for the global errors ‖εN+1‖6 ‖eN+1‖+
‖dN+1‖: 



‖εx f ,N+1‖
‖εxs,N+1‖
‖εys,N+1‖



6





1+C∗1H 1+C∗1H C∗1H

1+C∗1H 1+C1H∗ C∗1H

C∗1 C∗1 α∗









‖εx f ,N‖
‖εxs,N‖
‖εys,N‖





+
(

µ̂k−2
(

‖∆x f
(0)‖+‖∆xs

(0)‖
)

+ µ̂k−1‖∆ys
(0)‖

)





C∗2H

C∗2H

C∗2





(40)

If the contraction condition α∗ < 1 is fulfilled, the behavior of such coupled error recur-

sions is known (see [15], Lemma 2) and can be written as follows:

max
N

(

‖εx f ,N‖+‖εxs,N‖+‖εys,N‖
)

6C ·max
N

(

µ̂k−2
(

‖∆x f
(0)‖+‖∆xs

(0)‖
)

+ µ̂k−1‖∆ys
(0)‖

) (41)

with a positive constant C.
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As the total error is the expressed by the sum ‖εx f ,N‖+ ‖εxs,N‖+ ‖εys,N‖, the last ex-

pression completes the proof of Theorem 1.

(iv) As the initial guess operator←− leads to initial errors ‖∆x f
(0)‖, ‖∆xs

(0)‖ and ‖∆ys
(0)‖

of size O(H), the right-hand side of the last equation remains bounded for all H < H0,

if H0 is sufficiently small:

max
N

(

‖εx f ,N‖+‖εxs,N‖+‖εys,N‖
)

6C ·max
N

(

µ̂k−2
(

‖∆x f
(0)‖+‖∆xs

(0)‖
)

+ µ̂k−1‖∆λ (0)‖
)

6 γ0

(42)

This further shows that errors is bounded by γ0, and that approximate numerical solution

remains in the neighborhood Uγ0
of the solution.

(v) The constants α̂ and µ̂ which appear in proofs of Lemma 1 and Lemma 2 are given as

follows:

α̂ = α +O(1)max
n

(‖εx f ,N‖+‖εxs,N‖+‖ελ ,N‖)+O(H) = α +O(H)

and

µ̂ = α̂ +O(H)

These results give the following order of magnitude for α∗:

α∗ = L∗(µ̂k +(µ̂− α̂)k) = L∗((α +O(H)k +O(Hk)) (43)

The expression above confirms the criterion of stable error propagation for α∗ < 1. For

the iterative DFMT-BGS with an appropriate guess operator, the stability is guaranteed

when α < 1 and when the window size is small enough.

5 Validation and numerical examples

5.1 Lid-driven cavity flow with flexible bottom

Having recognized the value of this problem for establishing the standard benchmark in

fluid-structure interaction, we will provide a sufficiently detailed presentation of the results

obtained in order to promote the comparison.

The lid-driven cavity flow considers 2D fluid flow problem in a square domain. The

imposed boundary conditions at three out of four sides are the zero value of velocity. Only

at the top of the cavity we impose the velocity with a given nonzero value. The geometry

and boundary conditions are depicted in further details in Figure 3.

For the case of fluid-structure interaction problem [59,26] the flexible membrane is

placed at the bottom boundary (see Figure 3(b)). The flow is governed with Navier-Stokes

equations and we consider a Saint-Venant Kirchoff material able to undergo finite deforma-

tion for the structure part. The material properties are chosen as follows: the fluid den-

sity is ρ f = 1kg ·m−3, the kinematic velocity ν f = 0.01m · s−2, the structure density is

ρs = 500kg ·m−3, the Young modulus E = 250Pa and the Poisson ratio ν = 0.

The flow has a dominant convective term, which is usually the most difficult to solve

accurately. Furthermore, when the imposed velocity is sufficiently small, the flow is laminar

and incompressible. In fact, this lid-driven cavity flow (with a rigid bottom) problem is

traditionally used as a validating example for CFD codes. Therefore extensive literature is
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v(y = 1m,t)

(a) Lid-driven fluid flow in cavity

v(y = 1m,t)

(b) Modified lid-driven cavity for FSI

Fig. 3 The lid-driven cavity example

dedicated to its study, ever since the early works in computational fluid dynamics [27] to

more recent reviews [9] using different fluid solvers [29,22]. It is also proposed as a test

case for the fluid solver of OpenFOAM [48] we employ in this work. In the present test, the

cavity is discretized by finite volume mesh of 32×32 cells.

For the lid-driven cavity flow in Figure 3(a), all boundary nodes are constrained at the

Dirichlet boundary with imposed velocity, and pressure field remains undetermined up to

a constant. If this does not lead to any problem when only fluid flow is considered with no

interaction with the structure, a special care has to be taken for the fluid-structure interaction

case where the imposed velocity condition should satisfy incompressibility condition and

where the exact value of pressure is needed to define structure boundary conditions. This

difficulty was studied in [39].
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Fig. 4 Force acting at the center of the flexible bottom for some fixing pressure strategies

One way to overcome this difficulty for fluid-structure interaction lid-driven cavity prob-

lem, as proposed in [59,39] is to unconstrain two nodes on each size of the cavity (see Fig-

ure 3(b)). One subtle point concerns the chosen discretization techniques: for stabilized FE

approximation used in [59,39] constraints are removed at the nodes, whereas for the FV

method used herein the corresponding constraints at the boundary pertain to face of cells.

Another modification of lid-driven cavity problem, besides taking into account the fluid-
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structure interaction, concerns the time-dependent velocity boundary condition defined as:

v · ex = 1− cos

(

2π
t

Tchar

)

(44)

where Tchar = 5s. For such harmonic function, the solution of the fluid flow within the fluid-

structure interaction problem exhibits an oscillating behavior that is reached after a short

transition period. The maximum value of the Reynolds number in the cavity reaches Re =
200, and thus the flow can be considered as laminar.
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Fig. 5 Lid driven cavity with a flexible bottom: snapshots with pressure field and streamlines for different

time steps

This example represents a very good benchmark test for the case when the flow is mainly

driven by incompressibility. Moreover, it allows to obtain pretty good results with a rather

coarse mesh; namely with the Reynolds number not bigger than Re = 200, a mesh with

32x32 cells and a second order FV solver is sufficient to get an accurate solution [27,29].

Due to such a small mesh size, computations are fairly inexpensive, especially for a fluid-

structure interaction problem (for each time step of ∆ t = 0.1s, the flow computation takes
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1.08×10−1s and the structure motion takes 2.95×10−3s when run on a single processor).

The problem quickly reaches a harmonic steady-state solution, which provides a perfect

platform to test the energy creation or dissipation for partitioned solution to fluid-structure

interaction problem.

For the fluid flow only, we can stick with the problem where boundary conditions are

imposed on the velocity field, with no condition on the pressure field p. These boundary

conditions are also called zero gradient (or Neumann zero). In this case any constant can be

added to the computed pressure field, with no change for the fluid part since the gradient

of the pressure field in (9) will filter out any constant pressure. However, this can lead to

a non-unique pressure, and most of the iterative solver will fail for such a problem if no

remedy is proposed. This is even a bigger problem for fluid-structure interaction, where the

exact pressure is needed to obtain the corresponding structural motion.

If the fluid flow case only is considered there are two possible modifications (see [22]) of

this problem in order to specify a unique pressure field for Neumann zero boundary. Namely,

we can impose either the fixed value (e.g. zero) of the pressure in a arbitrary cell, or we can

consider the pressure field with the mean value equal to an imposed constant.

However, for the present version of the lid-driven cavity that accounts for fluid-structure

interaction problem, the issue of pressure computation becomes more demanding since not

only the gradient of the pressure field, but also its actual values must be known at the

fluid-structure interface. Unfortunately, a number of previous works (see [60,39,26]) did

not clearly specify the imposed condition on the pressure field. For example in [4], where

the pressure field is imposed at the flow inlet and outlet, the obtained result is totally dif-

ferent from the one given by the previous works predicting a high pressure at the bottom of

the cavity leading to an average negative displacement of the structure in the ey direction,

and requiring the use of a stiffer material in order to remain in the acceptable displacement

range.

In order to illustrate the importance of the chosen pressure condition in fluid-structure

interaction analysis we take the case of an almost rigid structure at the bottom and compute

the total force (from pressure and viscosity) applied to its center (nodal force at (0.5,0.0)).
These results are presented in Figure 4, showing very different time evolutions of pressure

force exerted on the structure for different choices of pressure boundary conditions. For

further computations, the pressure was set to zero at the flow outlet. Other boundaries are

considered to be Neumann zero for the pressure. The fluid domain is discretized with fourth

order FV in space, and the time integration is carried out by implicit Euler scheme. The mo-

mentum equation is solved by PBiCG, with a DILU preconditioning whereas the pressure

correction problem is worked out by iterative PCG, with DIC preconditioning. Two itera-

tions of the PISO correction algorithm are performed at each time step, and the precision

required for the iterative algorithms for pressure and velocity is 10−8. As the mesh is ini-

tially orthogonal, there is no reason to require initially non-orthogonal correctors. At a later

stage the deformation of the bottom will eventually produce non-orthogonal meshes and we

specify that two non-orthogonal corrections should be performed at each time step.

The fluid domain is subject to structure motion as the bottom of the domain. We assume

that no cavitation takes place and that fluid follows the deformation of the structure. The fluid

mesh deformation is handled by a smoothing process, based upon the solution to Laplacian

equation with the coefficient that depends on the distance to the bottom. On vertical walls,

the points are allowed only to move vertically, whereas elsewhere the boundary nodes are

fixed.

For the structure FE model a spatial discretization with 16×Q8 (quadratic) elements

is chosen. The time integration is carried out by implicit generalized HHT α-scheme in
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Fig. 6 Displacements at the fluid-structure interaction interface at the middle and the quarter lengths:

u(0.5,0) and u(0.25,0).

order to maximize numerical damping [24]. The non-linear algebraic equations is solved

at each time step by the Newton iterative algorithm with a prescribed tolerance of 10−8. A

non-symmetrical direct solver is used at each iteration.

The typical results for the pressure field, streamlines and structure deformation are plot-

ted in Figure 5. In Fig 6 the time history of the displacement is displayed when no interaction

is considered. Namely, the forces are computed by the CFD-based component, and applied

to the structure, but the structure motion is not imposed on the fluid domain, and thus there is

no need to compute any mesh motion. The same kind of results are presented in Figure 7 for

implicit coupling computations with a window size of ∆ t = 0.1s. The results largely differ

from the one obtained with a weak interaction model. The displacement remains exactly the

same for all predictors and relaxation techniques, once convergence to a residual norm less

than 10−7 is obtained. The results are close to those obtained in [59,26,39] (see Figure 7(b)).
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FEM for structure and stabilized FEM for fluid) and [26] (DFMT-BN coupling FEM for structure and

stabilized FEM for fluid)

Fig. 7 Implicit computation of the lid-driven cavity with flexible bottom solved with BGS and relaxation.
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Note that the inertia of the flexible bottom leads to a positive mean value of structure

displacement. Moreover, this further induces a large decrease in pressure and accordingly in

the expected force amplitude.
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Fig. 8 Number of iterations per time step for the BGS solver with fixed and Aitken’s relaxation (order 0

predictor)

A tolerance TOL= 10−7 is set for testing the convergence of the DFMT-BGS algorithm.

With a fixed under-relaxation of ω = 0.25, a constant decrease of the residual with a low

order is observed (see Figure 10). Aitken’s relaxation allows to reduce the mean number of

iterations required from 30 to 17 (see Figure 8). Aitken’s relaxation allows also to improve

the order of convergence. The convergence exhibits a less smooth behavior, with a faster

decrease of the residual with the increase of relaxation parameters (for instance the 4th it-

eration in Figure 12(a) and 10(a)). The relaxation parameter value is given in Figure 12 for

two chosen times 39s and 41s used in Figure 10 to represent the convergence of the residual;

The characteristic oscillations depicted in [40] are also observed.
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Fig. 9 Number of iterations per time step for the BGS solver with predictor of order 0, 1 and 2 (Aitken’s

relaxation)

The use of predictors does not change the order of convergence, but reduces the ini-

tial residual (see Figure 11). For example the characteristic number of iterations to reach

required precision decreases from 17 iterations for a zero order to 7 for a second order

predictor (Figure 9).

At the end of this section, we also present the results obtained for explicit DFMT cou-

pling algorithms applied to the lid-driven cavity with flexible structure at the bottom. The

added mass effects characteristic of explicit algorithms for the case of an incompressible

flow is observed in Figure 13, causing each computation to diverge sooner or later.

Our result divergence was not in agreement with the results convergence presented

in [24] for the least accurate predictors. The main reason, we believe, is due to the way the

enforcement of the true incompressibility condition for the fluid problem is really enforced.
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Fig. 10 Residual convergence for fixed and Aitken’s relaxation with order 0 predictor
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Fig. 11 Residual convergence with Aitken’s relaxation and predictor of order 0, 1 and 2

Namely, with FV and PISO algorithm used herein, we can strongly enforce incompressibil-

ity condition, which is less the case when using stabilized FE discretization as in [24].

The choices recognized to be important for triggering earlier instability of explicit cou-

pling are: increasing the order of predictor (see Figure 13(a)), decreasing the window size

for synchronization, (see Figure 13(b)), increasing the order of fluid integrator, (see Fig-

ure 13(c)), use of non-collocated algorithm like the DFMT-ISS (see Figure 13(d)). Mass
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Fig. 12 The lid-driven: evolution of relaxation parameter for two characteristic time steps

ratio between fluid and solid with larger ρ f /ρs, the instability occurs earlier; larger fluid

velocities and more flexible structure trigger instability more quickly. This is in fully agree-

ment with the theoretical and numerical observations made in [10,24,23]. The general con-

clusion is that accurate time integration of the sub-problem and coupling algorithms are

more sensitive to the artificial “Added-Mass Effect” and diverge more easily.

5.2 Flexible appendix in a flow

This example first proposed in [60], and subsequently also studied in [14,30,43] has also

been used as a benchmark for fluid-structure interaction. It is close to the benchmark pro-

posed in [58] itself constructed from the traditional CFD benchmark proposed in [53].

We consider a fixed square bluff body, with a flexible appendix attached to it, immersed

within an incompressible flow (see Figure 14) filling the whole domain. At a sufficiently

long distance from this body, the flow is uniform with an imposed velocity v; the corre-

sponding value of the Reynolds number with respect to the characteristic size of the obstacle

is Re = 330. For this Reynolds number, the flow exhibits a transient behavior with vortices

separating from the corner of the square. These vortices induce alternative drop and increase

in the pressure field behind the rigid bluff body at a frequency that depends on the Reynolds

number and the shape of the bluff body [51]. The vortex shedding induces oscillations of

the flexible appendix.

The thickness of the appendix as well as the material properties are chosen so that its first

eigen-frequency is close to the frequency of the vortex shedding. The material parameters

are respectively ρ f = 1.18×10−3kg.m−3 for the density and ν f = 1.54×10−1m2.s−1 for the

for the fluid (air at 20◦C). The imposed velocity at the left hand side is v = (51.3m.s−1,0).

For the solid part, consider a density ρs = 0.1kg.m−3, Young modulus is of Es = 2.5×
106N.m−2 and the Poisson ratio coefficient of νs = 0.35. The first eigen-frequency of the
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Fig. 13 Divergence of the explicit coupling for different coupling algorithm and time integration schemes

problem f = 3.03s−1 obtained considering a linear material is closed to the natural fre-

quency of vortex shedding behind a square bluff body at Reynolds Re = 330.

The chosen fluid discretization contains 5080 FV cells (i.e. around 20× 103 d-o-f),

which is quite sufficient to get an accurate representation of the flow, and also of the fluid

loading on the structure. The model accuracy is comparable to the one used in [14], built

with 4300 finite elements. The PISO algorithm and the Euler implicit scheme with a time

step ∆ t = 0.004s are used. The PCG solver is used for pressure correction step and mesh

motion equations and PBiCG for the momentum predictor.
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Fig. 14 The benchmark used for FSI problems

The flexible appendix is discretized with 20 nine-node elements, with quadratic poly-

nomes description of large structural displacement. Neo-Hookean and Saint-Venant–Kirschoff

materials are used. The time discretization is carried out by a generalized HHT-α scheme

with the following parameters: ρ∞ = 1
2
;β = 4

9
;γ = 5

3
; and α = 2

3
At each iteration, the linear

system is solved by the direct solver for asymmetric matrices.

The interface matching computation is carried out by the proposed DFMT-BGS solver,

that can easily converge since the channel is open and the flow is not mainly driven by

incompressibility. The Aitken relaxation technique is used with an initial value of 0.5, that

rapidly increases to 1. No more than 4 iterations are required to reach the required tolerance

on the interface displacement residual that is set to 1× 10−7. The results for pressure and

velocity field at several instants are given in Figure 15. The deformed shapes of the appendix

also given in Figure 15, reveal the oscillations dominated by the first mode.

The displacement at the free-end of the appendix is plotted in Figure 16 for both Saint-

Venant–Kirschoff and Neo-Hookean solid materials. The two results are very close, since

the appendix deformations remain small, despite its large displacement and rotations. The

long term response (see Figure 17) indicates an almost harmonic response dominated by

the first eigen-frequency of the structure. In Figure 17 we also give a comparison with the

results from the literature in term of the maximum amplitude of motion. Despite a well-

known sensitivity of the computed result with respect to the initial condition [30], we get

the answers obtained very close to the previous results from the literature based upon a FE

discretization for both fluid and solid parts and obtained either by a monolithic [14] or a

partitioned approach [59,44].

Contrary to the lid-driven cavity with a flexible bottom, the small number of iterations

required to solve the fluid-structure interaction problem of the oscillating appendix suggests

that an explicit coupling can also be used for solving this problem. The results from ex-

plicit DFMT algorithm presented in Figure 18 for the free-end displacement compare to a

reference solution obtained with an implicit computation.

Using better predictors is supposed to reduce the errors made in term of residual and

energy. In Figure 19(b), the energy error time history is represented for the zero, first and
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second order predictor. All the results confirm the trends we expected, with a decrease of

errors when the predictor order increases.
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Fig. 19 Energy error at the interface for different explicit coupling schemes.

The final study is then considered with respect to the size of time steps. In Fig 20, the

maximum residual error on the time interval t ∈ [0,15s] is presented as a function of the

time step size. The error is observed to decrease with a decreasing time step size. However,

when the time steps become too small, the added mass effect triggers the divergence of the

computation. Thus, only the less sensitive schemes with a zero order predictor are able to

solve the coupled problem with the smallest time step.

Remark: The extension to three-dimensional cases does not require the introduction of

theory, but requires tools to solve efficiently the problem with a large number of d-o-f, with

the use of paralleling for instance. A generalization of the two dimensional case presented
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Fig. 20 Maximum residual error for explicit coupling schemes with different time step sizes and predictors.

herein (see Fig. 21) and other three-dimensional numerical examples are discussed in the

Part II of this work.

T
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e
t
=
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5
s

Fig. 21 Flag in the wind: motion of the structure and stream-tube snapshots.

6 Conclusion

In this work we examine partitioned solution approach for nonlinear fluid-structure interac-

tion problems. The partitioned approach is preferred for its modularity and the possibility

of re-using existing software developed for each subproblem (see Part II). The partitioned

approach used here is based on the Direct Force-Motion Transfer. Both explicit and implicit

coupling algorithms for multi-physics problems are detailed. An explicit strategy leads to the

so-called “added mass effect”, and for that justifies the use of more costly implicit solvers

for the case of incompressible fluid flows.

In this work, the problem of enforcing the fluid-structure interface matching is handled

by the fixed-point strategy (DFMT-BGS) with an adaptive relaxation parameter. This strat-

egy shows a sufficiently robust performance, especially for the example where the flow is

not highly constrained by incompressibility. In fact, we showed by direct proof the stability

of the implicit DFMT-BGS algorithm which is valid for the fully nonlinear fluid-structure

interaction problem.
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20. M. Á. Fernández, J.-F. Gerbeau, A. Gloria, and M. Vidrascu. Domain decomposition based Newton

methods for fluid-structure interaction problems. In ESAIM: Proceedings, volume 22, pages 67–82.

edpsciences.org, 2008.
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22. Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dynamics. Springler-Verlag,

Berlin, Germany, 3rd edition, 2002.

23. Christiane Förster, Wolfgang A. Wall, and Ekkehard Ramm. On the geometric conservation law in

transient ow calculations on deforming domains. International Journal for Numerical Methods in Fluid,

50:1369–1379, 2006.

24. Christiane Förster, Wolfgang A. Wall, and Ekkehard Ramm. Artificial added mass instabilities in sequen-

tial staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in

Applied Mechanics and Engineering, 196:1278–1291, 2007.

25. L. P. Franca, T. J. R. Hughes, and R. Stenberg. Stabilized finite element methods. Incompressible

Computational Fluid Dynamics, pages 87–107, 1993.



30

26. J.F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model for fluid-structure

interaction problems in blood flows. Mathematical Modelling and Numerical Analysis, 37(4):631–647,

2003.

27. U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes

equations and a multigrid method. Journal of Computational Physics, 48:387–411, 1982.

28. M. Heil. An efficient solver for the fully coupled solution of large-displacement fluid–structure interac-

tion problems. Computer Methods in Applied Mechanics and Engineering, 193(1-2):1–23, 2004.
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