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Abstract—The high computational cost of SPH remains prob-
lematic in dealing with wave propagation, especially when the
domains considered are large. In order to overcome this difficulty,
we propose to couple 2-D SPH with a 1-D Finite Difference
Boussinesq-type model. The latter deals with wave propagations
for most of the spatial domain, whereas SPH computations focus
on the shoreline or close to off-shore structures, where a complex
description of the free-surface is required.

The re-use of existing codes is achieved using a generic imple-
mentation based on Component Technology. The communication
between software is ensured by the middleware Component
Template Library (CTL) [1], [2]. In order to deal with open
domains, open-boundaries have to be implemented for SPH,
with water height and velocity varying in space and time.
These velocity and water height values are then driven by the
Boussinesq-type model.

As an illustration of the one way coupling, we present herein
two simple examples of water waves, the first one with a flat
bottom, the other one representing a schematic coastal protection.

I. INTRODUCTION

The recent events in Japan have dramatically underlined the

necessity of accurate predictions for coastal protections. For

this kind of civil engineering coastal devices, it is required to

compute the flow near the shoreline, where the waves break.

But even if the recent trends in the development of GPU-based

SPH software seem promising for the computing of large 3D

domains, to compute wave propagation on the scale of oceans

with SPH is still beyond current computational capabilities.

Furthermore, it is often useless, as simplified models are able

to represent accurately the wave propagation on most of the

domain.

Indeed, the complexity of flows, and especially those at

large scales such as wave propagation across ocean make the

introduction of simplified models a natural development [3]–

[5]. Since the XIXth century, and through the XXth, models

such as Saint-Venant [6], Boussinesq [7], [8] and fully Non-

Linear Shallow Water equations (NLSW) [9], [10] provide

satisfying results in their respective ranges of application (from

deep to shallow water).

They are however, by definition, unable to represent accu-

rately the complexity of the flow near the coast, when waves

are breaking. The violent hydrodynamics of the wave is often

handled by energy dissipation models in the nearshore region

(e.g. roller models or sponge layers), often with coefficients

that need to be tuned for specific cases. One such example

is a study that compares the results from analytical,NLSWE

software and two-phase slightly compressible flows solved

by VOF strategy for the classical dam break problem [11],

and shows the necessity of advanced models for this kind of

application.

The development and implementation of appropriate models

however is to represent the complex free-surface, evolving

in time, with a possible multi-connected domain. Among all

the options now available, Smoothed Particle Hydrodynamics

(SPH) is offers one of the most attractive approaches. How-

ever, 3-D SPH models still often suffer from damping with the

waves being dissipated before reaching the coast if no proper

treatment is applied.

For these reasons the coupling between any of the wave

propagation models and complex free-surface flow strategies

seems appropriate to tackle this problem [12], [13]. One of the

motivations for this work is to re-use existing codes in order

to avoid the long development and validation phase.

The outline of this paper is as follows: in the next section,

we present the chosen formulation of the SPH numerical

model. In particular, a semi-implicit wall boundary condition is

used, as presented in this conference in [14]. In Section III, we

detail the Finite Difference Boussinesq-type model used here-

after. The coupling algorithm, the open-boundary conditions

required for SPH and the communication between software are

detailled in Section IV. In Section V, we present the results

of preliminary computations and in Section VI, we finish with

some conclusions.

II. SPH NUMERICAL MODEL

A. Continuous equations

We consider a turbulent weakly compressible free-surface

flow. The velocity vector, pressure, turbulent kinetic energy
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and energy dissipation rate are denoted by u, p, k and ǫ,
respectively. Velocities and pressures are Reynolds-averaged,

and the effects of turbulent fluctuations are modelled through

the concept of eddy viscosity µT , estimated from the k − ǫ
model.

The Lagrangian forms of the Reynolds-averaged Navier-

Stokes (RANS) and k − ǫ equations read

dρ

dt
= −ρ divu

du

dt
= −

1

ρ
grad p̃+

1

ρ
div (µmS) + g

dr

dt
= u (1)

dk

dt
= P − ǫ+

1

ρ
div (µkgrad k)

dǫ

dt
=

ǫ

k
(Cǫ1P − Cǫ2ǫ) +

1

ρ
div (µǫgrad ǫ)

where g is the gravity acceleration and ρ the fluid density. The

modified pressure p̃ and production of turbulent energy P are

given by

p̃ = p+
2

3
ρk

p =
ρ0c

2
0

ξ

[(
ρ

ρ0

)ξ

− 1

]

P = 2
µT

ρ
S : S =

µT

ρ
S2 (2)

S =
1

2

[
gradu+ (gradu)

T
]

with c0 the speed of sound, ξ = 7, and S the rate-of-strain

tensor field. Lastly, the dynamic viscosities are given by

µm = µ+ µT µT = Cµρ
k2

ǫ

µk = µ+
µT

σk

µǫ = µ+
µT

σǫ

(3)

where µ is is the fluid dynamic molecular viscosity. The values

of the model constants Cµ, Cǫ1, Cǫ2, σk and σǫ are given in

Table I.

Cµ Cǫ1 Cǫ2 σk σǫ

0.09 1.44 1.92 1.0 1.3

Table I
MODEL CONSTANTS

Equations (1) are subject to the following set of boundary

conditions at the walls:
[
∂

∂n

(
p

ρ
− g · r

)]

∂Ω

= 0

(
µm

∂u

∂n

)

∂Ω

= Qu = τ

(
µk

∂k

∂n

)

∂Ω

= 0 (4)

(
µǫ

∂ǫ

∂n

)

∂Ω

= Qǫ

where Qu and Qǫ are wall fluxes of momentum and energy

dissipation, respectively. The first one is equal to the wall shear

stress vector τ (see [14]). All fluxes are assumed to be zero

at the free-surface.

In the next two sections, we will present a renormalized

SPH formulation with appropriate boundary fluxes [14].

B. Discrete equations: modified SPH

This modified SPH model is proposed in [14]. The discrete

operators are renormalized with a function called γ(r), and

take account of boundary influence. For this purpose, the

discretization of the wall is not based on fictitious particles,

but rather on wall segments s and “vertex particles” v (see

Figure 3). The corresponding operators are thus marked with

a superscript γ and read

Iγa {Ab} =
1

γa

∑

b∈F

VbAbwab

Gγ
a {Ab,s} =

ρa
γa

∑

b∈F

mb

(
Aa

ρ2a
+

Ab

ρ2b

)
∇wab

−
ρa
γa

∑

s∈S

ρs

(
Aa

ρ2a
+

As

ρ2s

)
∇γas

G̃γ
a {Ab,s} = −

1

γaρa

∑

b∈F

mbAab ⊗∇wab (5)

+
1

γaρa

∑

s∈S

ρsAas ⊗∇γas

Lγ
a

{
Bb, Ab, Q

A
b,s

}
=

1

γa

∑

b∈F

Vb(Ba +Bb)
Aab

r2ab
rab · ∇wab

−
1

γa

∑

s∈S

|∇γas|(Q
A
a +QA

s )

(see [14]). As we can see in (6), the discrete operators are now

made of two terms each: the first one extends on the set F
of fluid and vertex particles, and is simply the corresponding

traditional SPH operator and renormalized by a factor γa
defined later. The second one involves a summation running

over the set S of wall segments. For this reason the operators

are applied to all data, including particles and segments and

denoted by {Ab,s}. The subscripts a and b denote quantities

relative to a particle, while the s refers to wall segments.

Note that the discrete Laplacian Lγ
a is now also a function

of the fluxes normal to the wall, defined by the following
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products

QA
a = (B∇A)a · ns

QA
s = (B∇A)s · ns (6)

where ns is the unit inward normal vector of the segment

(see Figure 3). The renormalization function and the contribu-

tion of segment s to its gradient are defined by

γa =

∫

Ω

w(|ra − r′|)dnr′

∇γas =

∫

S

w(|ra − rs|)nsd
n−1ΓS = |∇γas|ns (7)

where n is the space dimension and dn−1ΓS the surface

element of the wall at the point rs of the wall. The quantities

γa are computed from the following governing equation:

dγa
dt

=
∑

s∈S

∇γab · uas (8)

where uas = ua − us is the velocity of the particle a with

respect to the segment s. The quantities ∇γas are computed

from exact integrals (see [14] for details).

h

v
∂Ω

Ω

z

x

ra

rba

ns

Ss

Figure 1. The discretization used in our renormalized SPH model is based
on usual particles (a or b), vertex particles v and wall segments s (in two
dimensions). The truncation of the kernel is considered through the integral
γ (blue area).

As we can see, the present modified SPH model is a bit more

complicated than the standard one, but much more efficient

for both confined flows [14] and free-surface flows involving

inlet/outlet boundaries [15].

III. 1-D BOUSSINESQ-TYPE MODEL

The wave propagation can be described quite accurately

using simplified models; for instance, the classical Saint-

Venant and Boussinesq models describe the flow with inte-

grated Navier-Stokes equations over the water depth H = h+η
where h is the water depth at rest, and η the surface elevation

(see Figure 2). For the Boussinesq model, only the high order

η

h
zα

x

u(x, .)

uα = u(x, zα)

Figure 2. Notations for the 1D vertical Boussinesq-type model.

terms are kept [7]. The mass conservation equation is now

written as:

∂tH + ∂xHuα

−∂x

(
H

[(
η2−ηh+h2

6 − zα
2

)
∂2
xuα

+
(

η−h
2 − zα

)
∂x (∂xhuα + ∂th)

])
= 0

and the momentum equation states as:

∂xuα +
1

2
∂xu

2
α + g∂xη

+∂t

[zα
2
∂2
xuα + zα∂x (∂xhuα + ∂th)

−∂x

(η
2
∂2
xuα + η∂x (∂xhuα + ∂th)

)]

+∂x [∂tη (∂xhuα + ∂th+ η∂xuα)

+(zα − η)uα∂x (∂xhuα + ∂th) +
z2α − η2

2
uα∂

2
xuα

+
1

2
(∂xhuα + ∂th+ η∂xuα)

2

]
= 0

where uα is the horizontal velocity at a reference height

zα. We usually consider that zα = −0.531h. As in [16],

in order to simplify the notations, we introduce the variable

U = U(uα) = ∂tuα + h
[
b1h∂

3
x2tuα + b2∂

2
xh∂tuα

]
. Here b1

and b2 denote coefficient that depend of the reference height

scale (here 0.531). The second hand of the evolution of η
and U are noted E = E(η, uα) and F = F (η, uα). They

depend of the variables uα, η as well as their spatial and time

derivatives.

The spatial discretization is ensured with a high order

Finite Diffence strategy. The time discreatization is based on

a 4th order predictor-corrector scheme. In the Algorithm 1,

the solving scheme is presented. In this algorithm, we note

Xk
i,n the value of X discretized at point i, for the (k)-th sub-

iteration of time tn (see [17]).

IV. COUPLING ALGORITHM AND ITS IMPLEMENTATION

A. Coupling algorithm

In Narayanaswamy et. al [13], an explicit staggered cou-

pling algorithm between Boussinesq wave and a SPH model is

proposed. In our computations, we also considere the vertical

velocity in a buffer zone, and compute in a different way
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Algorithm 1 — Boussinesq model implemented in

BSQ_V2P3 [17]

1: Given: ui,0, ηi,0
2: for n = 1 . . . Nmax do

3: initialize iteration counter (k) = 0
4: predictor (explicit, order 3):
{

η
(0)
i,n+1 = ηi,n + ∆t

12 (23Ei,n − 16Ei,n−1 + 5Ei,n−2)

U
(0)
i,n+1 = Ui,n + ∆t

12 (23Fi,n − 16Fi,n−1 + 5Fi,n−2)

5: compute velocity u
(0)
i,n+1 from U

(0)
i,n+1

6: compute E
(0)
n+1 = E(η

(0)
i,n+1, u

(0)
i,n+1) and F

(0)
n+1 =

F (η
(0)
i,n+1, u

(0)
i,n+1)

7: while ∆η > 0.0001 or ∆u > 0.0001 do

8: corrector (explicit, order 4):




η
(k+1)
i,n+1 = ηi,n + ∆t

24 (9E
(k)
i,n+1 + 19Ei,n − 5Ei,n−1

Ei,n−2)

U
(k+1)
i,n+1 = Ui,n + ∆t

24 (9E
(k)
i,n+1 + 19Fi,n − 5Fi,n−1

Fi,n−2)

9: compute velocity u
(k)
i,n+1 from U

(k)
i,n+1

10: compute E
(k)
n+1 = E(η

(k)
i,n+1, u

(k)
i,n+1) and F

(k)
n+1 =

F (η
(k)
i,n+1, u

(k)
i,n+1)

11: compute error indicator: ∆η =
∑

i
|η

(k)
i,n+1−η

(0)
i,n+1|

∑
i
|η

(k)
i,n+1|

and

∆u =
∑

i
|u

(k)
i,n+1−u

(0)
i,n+1|

∑
i
|u

(k)
i,n+1|

12: (k)←− (k + 1)
13: end while

14: end for

Boussinesq model SPH

Buffer of size D

uα = u(x, zα)

Figure 3. Coupling strategy between Boussinesq model and SPH solver
using a buffer zone.

the water heigh in the fluid domain. The Boussinesq solver

advances in time with a given time step ∆tBsq. From the

Boussinesq solver the velocity profile can be extracted to be

imposed at one of the boundary of the SPH solver. For stability

reasons, the SPH solver advances in time with smaller time

step, denoted ∆tSPH. From the SPH solver one obtaines:

• the velocity at the reference depth through an SPH

approximation

• the wave height here computed as 2× the mean water

particle height.

Algorithm 2 — Explicit coupling between Boussinesq and

SPH solvers (2D)

1: Given initial conditions.

2: for n = 1 . . . nmax do

3: t = n∆tBsq

4: impose wave height and velocity at reference height on

the Boussinesq boundary (ηb, uα,b)
5: solve fluid problem with time step ∆tBsq

6: get velocity from Boussinesq solver at points (xi, zi)
on the SPH boundary:

u(xi, zi) = uα(xi) + ∂xzα∂xhuα + (zα − zi)∂
2
xhuα

+zα∂xzα∂xuα + 1
2

(
z2α − z2i

)
∂2
xuα

w(xi, zi) = ∂xuα(−h− zi)− uα∂xh

7: solve SPH problem from time t−
∆tBsq

2 to t+
∆tBsq

2
8: for k = 1 . . . kmax do

9: t = (n− 1
2 )∆tBsq + k∆tSPH

10: interpolate velocity (ui, wi)
k (linear) and impose

SPH boundary particle displacement as:

rk+1
i = xk

i +∆tSPHu
k
i

11: solve SPH problem with time step ∆tSPH

12: end for

13: get water height and velocity at the reference height of

the Boussinesq boundary.

14: end for

B. Numerical implementation

A simple way to make software communicate can be to

ask one of them to write a file with data and to provide

to the another the adapted function to read it. This method

suffers of poor CPU time efficiency, and is therefore not

easily generalisable. Component-based development requires a

middleware layer between clients and services. More precisely,

in [18], a Middleware is defined as:

“providing a standardized, API-like interface that

can allow applications on different platforms or

written in different languages to interoperate”.

Many free and non-free middlewares are currently available

on the market; The most well known are CORBA (Com-

mon Object Request Broker Architecture), Java™RMI or

Microsoft®.NET. However, the field of scientific computing

requires high performance in communication, which implies

that only a few of the available middleware are of interest for

extensive computation. In fact, according to information on

performance computing between different types of middleware

in [19], only CORBA – among the quoted environments –

fulfills the cost requirement, but is known for its complicated

syntax.
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In the last ten years however, new components like

CCA [20], Charm++ [21] or Component Template Library

(CTL) where developed specifically for the need of scientific

computing and with the aim of simplifying the syntax. In this

work, following in the steps of earlier development [1], [2],

we will use the CTL as middleware.

Initially part of ParaFEP [22], the Component Template

Library (CTL) was developed by Dr. R. Niekamp at the

Institute für Wissenschaftliches Rechnen (TU-Braunschweig).

It is a C++ template library, like the default C++ libray –

Standard Template Library (STL) – that builds a wrapper or

a communication layer around a software, and thus allows

so to build components from existing pieces of code. This

layer ensures a serialization of the data to be exchanged over

a network, and implements, via code generation, an interface

defined in a particular header file. Unlike complicated CORBA

syntax, the API is here written in C-preprocessor language,

that is in a *.ci (for Component Interface) file.

The main two advantages of CTL are [23]:

• providing a lightweight that can be used on top of sev-

eral local (library and thread) or remote communication

methods (TCP/IP, MPI and others).

• making the process of writing an application or a service

which uses the CTL protocol as transparent as possible.

Developers of a service can write its implementation as

though they would write a normal local class, with the

exception that they need to give the CTL a method to

serialize the contained data. Developers of a client only

needs then to choose a service within the CTL API

(Application Programming Inteface) and how it starts.

They can use the objects provided by CTL services as

if they were standard local objects.

C. Open-boundary for SPH

Let us now address the question of particle treatment in

the buffer area. The usual method to create/delete particles is

described in [15]. This method is modified in order to deal

with boundaries that can swith between inlet or outlet, and

with a varying height. We consider a buffer zone buffer zone

on which we impose physical variables. To conserve the same

number of particles in buffer zone (defined between Xmin

et Xmin + D), we have to create particles at Xmin abscissa

each times a particle leaves the buffer (reaches the Xmin+D
threshold) to go the fluid domain. For an outlet particle that

goes from the fluid to the buffer, the motion is then driven by

the imposed values. At the outlet, we delete particles which

reach the limit of the fluid domain x < Xmin. The thickness

of each buffer zone should be at least the kernel support.

In our case, the following difficulties arise since the buffer

zone adresses unsteady B.C.:

1) The velocity is not the same for each particle in the

buffer zone, as, according to Boussinesq hypotheses, the

horizontal (resp. vertical) velocity is a quadratic (resp.

linear) function of height.

2) The buffer zone can be either an input or an output

during the simulation.

3) The buffer zone has a varying height.

To update the buffer zone, the following algorithm is

applied. We define first the application

T : ra −→ ra −Dex (9)

that translates a given particle from its position ra with a

vector of the size of the buffer zone. We also not C the operator

that create a new particle.

If F is the set of fluid particles, FB is the set of fluid

particles inside the buffer zone B, and FB the set of fluid

particle that are not inside the buffer. At a given time tn+1,

the particles in Fn+1

B→B
= FBn ∩ F

B
n+1 are going from the

buffer zone to the fluid domain. In the buffer zone, the area

where there is a lack of particle can be defined as:

B∅ = {r ∈ FB|α(r) < ε} (10)

where ε is a given (small) parameter and α is a renormalisation

parameter. To complete the kernel of fluid particles, the buffer

needs to remain full over time, even if particle are going out.

Moreover, if the buffer height is varying, we need to destroy

or create particles. To create new particle, we use a regularly

spaced particles F̂B. To update the buffer zone at tn+1, the

following application is used:

C
([
B∅ ∩ T (F

n+1

B→B
)
]
∪
[
B∅ ∩ F̂B

])
(11)

Let us recall that B is a function of time, as the water height

is imposed through a Boussinesq computation.

V. NUMERICAL EXAMPLES

In this section, the coupling strategy is illustrated with two

test cases. The coupling concerns a 2D SPH model and a 1D

Boussinesq-type model, using respectively Spartacus and

Bsq_V2P3.

A. Wave propagation over a flat bottom

In this first example, we present our preliminary results of

a weak coupling between our two solvers.

The wave propagates over a flat domain. The left part, from

x = −10m to x = 0m is computed using the Boussinesq-

type model, and the initial water depth is h = 0.5m. In the

Boussinesq side, waves with a 0.12m height and a T = 0.6s
period are generated. The spatial discretization is ensured with

250 points, and the time step used for this side as well as for

the coupling window is 0.02s.

For the SPH computation, we consider a speed of sound

c = 20m.s−1. The buffer zone of the SPH model is of size

xbuff = 6 × dr, where dr = 0.01m. The SPH domain has a

lenght of 2.5m, and around 12 500 particles are required. The

time step may varies over time in order to satisfy SPH stability

criterion, and many SPH time steps are required to compute

the 0.02s of the coupling window.

In Figure 4, we present the results for a weak coupling,

where only the Boussinesq side has an influence on the SPH



6th international SPHERIC workshop Hamburg, Germany, June, 08-10 2011
0.
2s

0.
4s

0.
8s

2.
0s

3.
0
s

4.
0s

4
.6
s

5.
0
s

5.
4
s

5.
6
s

6.
0
s

Figure 4. Preliminary results: wave propagation over a flat bottom.

side. We represent the velocities on the SPH side, as well as

the water height for the Boussinesq-type model. In order to

see the influence of the right boundary on the SPH domain,

we also give the water height for a Boussinesq computation

over a flat domain without boundary. Let us note that for the

first seconds, the weak coupling perform quite well. After a

certain time, the wave reflects on the right wall, and it should

be required to use a strong coupling strategy so that the SPH

influences the Boussinesq computation as well.

B. Wave over a schematic coastal protection

For the second example, the geometry considered is a

schematic coastal protection. The water depth is 0.465m. The

domain is flat along 10.5m. The first 10m are modelled with

the Boussinesq-type model. Then, a slope 1/3 starts, covered

with squares of size around 0.1m, spaced from eachother and

from the bottom by 0.05m (see Figure 5(a)).

In the Boussinesq side, irregular waves are generated.

The time step used for the Boussinesq computation and for

data exchange between the two models is 0.01s. For the

SPH computation, we consider a speed of sound celerity

c = 20m.s−1. The buffer zone of the SPH model is of size

xbuff = 6× dr, where dr = 0.005m. Around 20 000 particles

are required. Note that if the whole domain had been modelled

with SPH, around 200 000 should have been required for the

same accuracy, and the computational time step would have

been multiplied by a factor 1000.

In Figure 5, we present the results for a weak coupling,

where only the Boussinesq side has an influence on the SPH

side. We represent both the water height and the pressure.

(a) General view of the simulation at t = 0.2s. Water height for in the
Boussinesq model and velocity field in the SPH zone.

(b) General view of the simulation at t = 0.2s. Pressure field for the
SPH zone.

Figure 5. Preliminary results: wave propagation and impact on a coastal
protection.

VI. CONCLUSION

We have presented a coupling strategy between an SPH

solver and a Finite Difference Boussinesq-type model. From

the SPH point of view the coupling requires the implementa-

tion of an open boundary with time varying water depths and

velocities. Hence, the waves are not built using a classic wave-

of, and furthermore, the velocity also has a vertical component

in the buffer zone. The implementation, based on the CTL,

enables re-use existing codes in a generic way.
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In the presented example, the coupling is weak, as only

the Boussinesq-type side has an impact on the SPH side. The

future work concerns the implementation of a strong coupling,

where the Boussinesq model is also influenced by the results

of the SPH computations. This strong coupling strategy is

obviously more accurate, and removes most of the errors

observed at the interface. Another promising possibility of

research is to deal with imposing velocities at the Eulerian

boundaries with the same kind of strategy used for the solid

boundaries based on the renomralization function γ given

by (7) in order to avoid the buffer zone.
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