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We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures such as least square regression, kernel ridge regression, shrinking estimators and many other estimators used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate.

1. Introduction. There is a growing empirical evidence of superiority of aggregated statistical procedures, also referred to as blending, stacked generalization, or ensemble methods, with respect to "pure" ones. Since their introduction in the 1990's, famous aggregation procedures such as Boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF], Bagging [START_REF] Breiman | Bagging Predictors[END_REF] or Random Forest [START_REF] Amit | Shape quantization and recognition with randomized trees[END_REF] have been successfully used in practice for a large variety of applications. Moreover, most recent Machine Learning competitions such as Pascal VOC or Netflix challenge have been won by procedures combining different types of classifiers / predictors / estimators. It is therefore of central interest to understand from a theoretical point of view what kind of aggregation strategies should be used for getting the best possible combination of the available statistical procedures.

1.1. Historical remarks and motivation. In the statistical literature, to the best of our knowledge, theoretical foundations of aggregation procedures were first studied by Nemirovski (Nemirovski [47], Juditsky and Nemirovski [START_REF] Juditsky | Functional aggregation for nonparametric regression[END_REF]) and independently by a series of papers by Catoni (see [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF] for an account) and Yang [START_REF] Yang | Combining different procedures for adaptive regression[END_REF][START_REF] Yang | Regression with multiple candidate selecting or mixing?[END_REF][START_REF] Yang | Aggregating regression procedures to improve performance[END_REF]. For the regression model, a significant progress was achieved by Tsybakov [START_REF] Tsybakov | Optimal Rates of Aggregation[END_REF] with introducing the notion of optimal rates of aggregation and proposing aggregation-rate-optimal procedures for the tasks of linear, convex and model selection aggregation. This point was further developed in [START_REF] Lounici | Generalized mirror averaging and D-convex aggregation[END_REF][START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF][START_REF] Bunea | Aggregation for Gaussian regression[END_REF], especially in the context of high dimension with sparsity constraints and in [START_REF] Rigollet | Kullback-Leibler aggregation and misspecified generalized linear models[END_REF] for Kullback-Leibler aggregation.

From a practical point of view, an important limitation of the previously cited results on aggregation is that they are valid under the assumption that the aggregated procedures are deterministic (or random, but independent of the data used for aggregation). The generality of those results-almost no restriction on the constituent estimators-compensates to this practical limitation.

In the Gaussian sequence model, a breakthrough was reached by Leung and Barron [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF]. Building on very elegant but not very well known results by George [START_REF] George | Minimax multiple shrinkage estimation[END_REF], they established sharp oracle inequalities for the exponentially weighted aggregate (EWA) for constituent estimators obtained from the data vector by orthogonally projecting it on some linear subspaces. Dalalyan and Tsybakov [START_REF] Dalalyan | Aggregation by Exponential Weighting, Sharp Oracle Inequalities and Sparsity[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF] showed the result of [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] remains valid under more general (non-Gaussian) noise distributions and when the constituent estimators are independent of the data used for the aggregation. A natural question arises whether a similar result can be proved for a larger family of constituent estimators containing projection estimators and deterministic ones as specific examples. The main aim of the present paper is to answer this question by considering families of affine estimators.

Our interest in affine estimators is motivated by several reasons. First, affine estimators encompass many popular estimators such as smoothing splines, the Pinsker estimator [START_REF] Pinsker | Optimal filtration of square-integrable signals in Gaussian noise[END_REF][START_REF] Efromovich | Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression[END_REF], local polynomial estimators, non-local means [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Salmon | NL-Means and aggregation procedures[END_REF], etc. For instance, it is known that if the underlying (unobserved) signal belongs to a Sobolev ball, then the (linear) Pinsker estimator is asymptotically minimax up to the optimal constant, while the best projection estimator is only rate-minimax. A second motivation is that-as proved by Juditsky and Nemirovski [START_REF] Juditsky | Nonparametric denoising of signals with unknown local structure. I. Oracle inequalities[END_REF]-the set of signals that are well estimated by linear estimators is very rich. It contains, for instance, sampled smooth functions, sampled modulated smooth functions and sampled harmonic functions. One can add to this set the family of piecewise constant functions as well, as demonstrated in [START_REF] Polzehl | Adaptive weights smoothing with applications to image restoration[END_REF], with natural application in magnetic resonance imaging. It is worth noting that oracle inequalities for penalized empirical risk minimizer were also proved by Golubev [START_REF] Golubev | On universal oracle inequalities related to high-dimensional linear models[END_REF], and for model selection by Arlot and Bach [START_REF] Arlot | Data-driven calibration of linear estimators with minimal penalties[END_REF], Baraud, Giraud and Huet [START_REF] Baraud | Estimator selection in the Gaussian setting[END_REF].

In the present work, we establish sharp oracle inequalities in the model of heteroscedastic regression, under various conditions on the constituent estimators assumed to be affine functions of the data. Our results provide theoretical guarantees of optimality, in terms of expected loss, for the exponentially weighted aggregate. They have the advantage of covering in a unified fashion the particular cases of frozen estimators considered by Dalalyan and Tsybakov [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF] and of projection estimators treated by Leung and Barron [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF].

We focus on the theoretical guarantees expressed in terms of oracle inequalities for the expected squared loss. Interestingly, although several recent papers [START_REF] Arlot | Data-driven calibration of linear estimators with minimal penalties[END_REF][START_REF] Baraud | Estimator selection in the Gaussian setting[END_REF][START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF] discuss the paradigm of competing against the best linear procedure from a given family, none of them provide oracle inequalities with leading constant equal to one. Furthermore, most existing results involve some constants depending on different parameters of the setup. In contrast, the oracle inequality that we prove herein is with leading constant one and admits a simple formulation. It is established for (suitably symmetrized, if necessary) exponentially weighted aggregates [START_REF] George | Minimax multiple shrinkage estimation[END_REF][START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF][START_REF] Dalalyan | Sparse Regression Learning by Aggregation and Langevin Monte-Carlo[END_REF] with an arbitrary prior and a temperature parameter which is not too small. The result is non-asymptotic but leads to asymptotically optimal residual term when the sample size, as well as the cardinality of the family of constituent estimators, tends to infinity. In its general form, the residual term is similar to those obtained in PAC-Bayes setting [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF][START_REF] Langford | PAC-Bayes & Margins[END_REF][START_REF] Seeger | Pac-bayesian generalisation error bounds for gaussian process classification[END_REF] in that it is proportional to the Kullback-Leibler divergence between two probability distributions.

The problem of competing against the best procedure in a given family was extensively studied in the context of online learning and prediction with expert advice [START_REF] Kivinen | Averaging expert predictions[END_REF][START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]. A connection between the results on online learning and statistical oracle inequalities was established by Gerchinovitz [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF]. 1.2. Notation and examples of linear estimators. Throughout this work, we focus on the heteroscedastic regression model with Gaussian additive noise. We assume we are given a vector Y = (y 1 , • • • , y n ) ⊤ ∈ R n obeying the model:

y i = f i + ξ i , for i = 1, . . . , n, (1.1) 
where ξ = (ξ 1 , . . . , ξ n ) ⊤ is a centered Gaussian random vector, f i = f (x i ) where f : X → R is an unknown function and x 1 , . . . , x n ∈ X are deterministic points. Here, no assumption is made on the set X . Our objective is to recover the vector f = (f 1 , . . . , f n ) ⊤ , often referred to as signal, based on the data y 1 , . . . , y n . In our work, the noise covariance matrix Σ = E[ξξ ⊤ ] is assumed to be finite with a known upper bound on its spectral norm |||Σ|||. We denote by

•|• n the empirical inner product in R n : u|v n = (1/n) n i=1 u i v i .
We measure the performance of an estimator f by its expected empirical quadratic loss:

r = E f -f 2 n where f -f 2 n = 1 n n i=1 (f i -fi ) 2 .
We only focus on the task of aggregating affine estimators fλ indexed by some parameter λ ∈ Λ. These estimators can be written as affine transforms of the data Y = (y 1 , . . . , y n ) ⊤ ∈ R n . Using the convention that all vectors are one-column matrices, we have fλ = A λ Y + b λ , where the n × n real matrix A λ and the vector b λ ∈ R n are deterministic. It means the entries of A λ and b λ may depend on the points x 1 , . . . , x n but not on the data Y . Let us describe now different families of linear and affine estimators successfully used in the statistical literature. Our results apply to all these families, leading to a procedure that behaves nearly as well as the best (unknown) one of the family.

Ordinary least squares. Let {S λ : λ ∈ Λ} be a set of linear subspaces of R n . A well known family of affine estimators, successfully used in the context of model selection [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], is the set of orthogonal projections onto S λ . In the case of a family of linear regression models with design matrices X λ , one has A λ = X λ (X ⊤ λ X λ ) + X ⊤ λ , where (X ⊤ λ X λ ) + stands for the Moore-Penrose pseudo-inverse of X ⊤ λ X λ . Diagonal filters. Other common estimators are the so called diagonal filters corresponding to diagonal matrices A = diag(a 1 , . . . , a n ). Examples include:

• Ordered projections: a k = 1l (k≤λ) for some integer λ (1l (•) is the indicator function). Those weights are also called truncated SVD (Singular Value Decomposition) or spectral cutoff. In this case a natural parametrization is Λ = {1, . . . , n}, indexing the number of elements conserved. • Block projections: a k = 1l (k≤w 1 ) + m-1 j=1 λ j 1l (w j ≤k≤w j+1 ) , k = 1, . . . , n, where λ j ∈ {0, 1}. Here the natural parametrization is Λ = {0, 1} m-1 , indexing subsets of {1, . . . , m -1}.

• Tikhonov-Philipps filter: a k = 1 1+(k/w) α , where w, α > 0. In this case, Λ = (R * + ) 2 , indexing continuously the smoothing parameters.

• Pinsker filter: a k = 1 -k α w + , where x + = max(x, 0) and (w, α) = λ ∈ Λ = (R * + ) 2 . Kernel ridge regression. Assume that we have a positive definite kernel k : X × X → R and we aim at estimating the true function f in the associated reproducing kernel Hilbert space (H k , • k ). The kernel ridge estimator is obtained by minimizing the criterion Y - [57, p. 118]). Denoting by K the n × n kernel-matrix with element K i,j = k(x i , x j ), the unique solution f is a linear estimate of the data, f = A λ Y , with A λ = K(K + nλI n×n ) -1 , where I n×n is the n × n identity matrix.

f 2 n + λ f 2 k w.r.t. f ∈ H k (see
Multiple Kernel learning. As described in [START_REF] Arlot | Data-driven calibration of linear estimators with minimal penalties[END_REF], it is possible to handle the case of several kernels k 1 , . . . , k M , with associated positive definite matrices K 1 , . . . , K M . For a parameter λ = (λ 1 , . . . , λ M ) ∈ Λ = R M + , one can define the estimators fλ = A λ Y with

A λ = M m=1 λ m K m M m=1 λ m K m + nI n×n -1 . (1.2)
It is worth mentioning that the formulation in Eq.(1.2) can be linked to the group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] and to the multiple kernel learning introduced in [START_REF] Lanckriet | Learning the kernel matrix with semidefinite programming[END_REF]-see [START_REF] Arlot | Data-driven calibration of linear estimators with minimal penalties[END_REF] for more details.

Moving averages. If we think of coordinates of f as some values assigned to the vertices of an undirected graph, satisfying the property that two nodes are connected if the corresponding values of f are close, then it is natural to estimate f i by averaging out the values Y j for indices j that are connected to i. The resulting estimator is a linear one with a matrix

A = (a ij ) n i,j=1
such that a ij = 1l V i (j)/n i , where V i is the set of neighbors of the node i in the graph and n i is the cardinality of V i .

1.3. Organization of the paper. In Section 2, we introduce EWA and state a PAC-Bayes type bound in expectation assessing optimality properties of EWA in combining affine estimators. The strengths and limitations of the results are discussed in Section 3. The extension of these results to the case of grouped aggregation-in relation with ill-posed inverse problemsis developed in Section 4. As a consequence, we provide in Section 5 sharp oracle inequalities in various set-ups: ranging from finite to continuous families of constituent estimators and including sparse scenarii. In Section 6, we apply our main results to prove that combining Pinsker's type filters with EWA leads to asymptotically sharp adaptive procedures over Sobolev ellipsoids. Section 7 is devoted to numerical comparison of EWA with other classical filters (soft thresholding, blockwise shrinking, etc.), and illustrates the potential benefits of aggregating. Conclusion is given in Section 8, while technical proofs are postponed to the Appendix.

2. Aggregation of estimators: main results. In this section, we describe the statistical framework for aggregating estimators and we introduce the exponentially weighted aggregate. The task of aggregation consists in estimating f by a suitable combination of the elements of a family of constituent estimators F Λ = ( fλ ) λ∈Λ ∈ R n . The target objective of the aggregation is to build an aggregate f aggr that mimics the performance of the best constituent estimator, called oracle (because of its dependence on the unknown function f ). In what follows, we assume that Λ is a measurable subset of R M , for some M ∈ N.

The theoretical tool commonly used for evaluating the quality of an aggregation procedure is the oracle inequality (OI), generally written:

E f aggr -f 2 n ≤ C n inf λ∈Λ E fλ -f 2 n + R n , (2.1) 
with residual term R n tending to zero as n → ∞, and leading constant C n being bounded. The OIs with leading constant one are of central theoretical interest since they allow to bound the excess risk and to assess the aggregation-rate-optimality. They are often referred to as sharp OI.

2.1. Exponentially Weighted Aggregate (EWA). Let r λ = E fλf 2 n denote the risk of the estimator fλ , for any λ ∈ Λ, and let rλ be an estimator of r λ . The precise form of rλ strongly depends on the nature of the constituent estimators. For any probability distribution π over Λ and for any β > 0, we define the probability measure of exponential weights, π, by

π(dλ) = θ(λ)π(dλ) with θ(λ) = exp(-nr λ /β) Λ exp(-nr ω /β)π(dω)
.

(2.

2)

The corresponding exponentially weighted aggregate, henceforth denoted by fEWA , is the expectation of fλ w.r.t. the probability measure π:

fEWA = Λ fλ π(dλ) . (2.3) 
We will frequently use the terminology of Bayesian statistics: the measure π is called prior, the measure π is called posterior and the aggregate fEWA is then the posterior mean. The parameter β will be referred to as the temperature parameter. In the framework of aggregating statistical procedures, the use of such an aggregate can be traced back to George [START_REF] George | Minimax multiple shrinkage estimation[END_REF].

The interpretation of the weights θ(λ) is simple: they up-weight estimators all the more that their performance, measured in terms of the risk estimate rλ , is good. The temperature parameter reflects the confidence we have in this criterion: if the temperature is small (β ≈ 0) the distribution concentrates on the estimators achieving the smallest value for rλ , assigning almost zero weights to the other estimators. On the other hand, if β → +∞ then the probability distribution over Λ is simply the prior π, and the data do not influence our confidence in the estimators.

Main results. In this paper, we only focus on affine estimators

fλ = A λ Y + b λ , (2.4) 
where the n × n real matrix A λ and the vector b λ ∈ R n are deterministic. Furthermore, we will assume that an unbiased estimator Σ of the noise covariance matrix Σ is available. It is well-known (cf., Appendix A for details) that the risk of the estimator (2.4) is given by

r λ = E[ fλ -f 2 n ] = (A λ -I n×n )f + b λ 2 n + Tr(A λ ΣA λ ⊤ ) n (2.5)
and that runb λ , defined by

runb λ = Y -fλ 2 n + 2 n Tr( ΣA λ ) - 1 n Tr[ Σ] (2.6)
is an unbiased estimator of r λ . Along with runb λ we will use another estimator of the risk that we call adjusted risk estimate and define by:

radj λ = Y -fλ 2 n + 2 n Tr( ΣA λ ) - 1 n Tr[ Σ] runb λ + 1 n Y ⊤ (A λ -A 2 λ )Y . (2.7)
One can notice that the adjusted risk estimate radj λ coincides with the unbiased risk estimate runb λ if and only if the matrix A λ is an orthogonal projector.

To state our main results, we denote by P Λ the set of all probability measures on Λ and by K(p, p ′ ) the Kullback-Leibler divergence between two probability measures p, p ′ ∈ P Λ :

K(p, p ′ ) = Λ log dp dp ′ (λ) p(dλ) if p is absolutely continuous w.r.t. p ′ , +∞ otherwise.
We write S 1 S 2 (resp. S 1 S 2 ) for two symmetric matrices S 1 and S 2 , when S 2 -S 1 (resp. S 1 -S 2 ) is semi-definite positive.

Theorem 1. Let all the matrices A λ be symmetric and Σ be unbiased and independent of Y . i) Assume that for all λ, λ ′ ∈ Λ, it holds that 

A λ A λ ′ = A λ ′ A λ , A λ Σ + ΣA λ 0 and b λ = 0. If β ≥ 8|||Σ||| then,
E fEWA -f 2 n ≤ inf p∈P Λ Λ E fλ -f 2 n p(dλ) + β n K(p, π) + 1 n Λ f ⊤ (A λ -A 2 λ )f + Tr Σ(A λ -A 2 λ ) p(dλ) .
The simplest setting in which all the conditions of part i) of Theorem 1 are fulfilled is when the matrices A λ and Σ are all diagonal, or diagonalizable in a common base. This result, as we will see in Section 6, leads to a new estimator which is adaptive, in the exact minimax sense, over the collection of all Sobolev ellipsoids. It also suggests a new method for efficiently combining varying-block-shrinkage estimators, as described in Section 5.4.

However, part i) of Theorem 1 leaves open the issue of aggregating affine estimators defined via non-commuting matrices. In particular, it does not allow us to evaluate the MSE of EWA when each A λ is a convex or linear combination of a fixed family of projection matrices on non-orthogonal linear subspaces. Such kind of situations may be handled via the result of part ii) of Theorem 1. One can observe that in the particular case of a finite collection of projection estimators (i.e., A λ = A 2 λ and b λ = 0 for every λ), the result of part ii) offers an extension of [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF]Corollary 6] to the case of general noise covariances ([44] deals only with i.i.d. noise).

An important situation covered by part ii) of Theorem 1, but not by part i), concerns the case when signals of interest f are smooth or sparse in a basis B sig which is different from the basis B noise orthogonalizing the covariance matrix Σ. In such a context, one may be interested in considering matrices A λ that are diagonalizable in the basis B sig which, in general, do not commute with Σ.

Remark 1. While the results in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] yield a sharp oracle inequality in the case of projection matrices A λ , they are of no help in the case when the matrices A λ are nearly idempotent and not exactly. Assertion ii) of Theorem 1 fills this gap by showing that if

max λ Tr[A λ -A 2 λ ] ≤ δ then E fEWA -f 2 n is bounded by inf p∈P Λ Λ E fλ -f 2 n p(dλ) + β n K(p, π) + δ f 2 n + n -1 |||Σ||| .
Remark 2. We have focused only on Gaussian errors to emphasize that it is possible to efficiently aggregate almost any family of affine estimators. We believe that by a suitable adaptation of the approach developed in [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF], claims of Theorem 1 can be generalized-at least when ξ i are independent with known variances-to some other common noise distributions.

The results presented so far concern the situation when the matrices A λ are symmetric. However, using the last part of Theorem 1, it is possible to propose an estimator of f that is almost as accurate as the best affine estimator A λ Y + b λ even if the matrices A λ are not symmetric. Interestingly, the estimator enjoying this property is not obtained by aggregating the original estimators fλ = A λ Y + b λ but the "symmetrized" estimators fλ = Ãλ Y + b λ , where Ãλ = A λ + A λ ⊤ -A λ ⊤ A λ . Besides symmetry, an advantage of the matrices Ãλ , as compared to the A λ 's, is that they automatically satisfy the contraction condition Ãλ I n×n required by part ii) of Theorem 1. We will refer to this method as Symmetrized Exponentially Weighted Aggregates (or SEWA) [START_REF] Dalalyan | Competing against the best nearest neighbor filter in regression[END_REF].

Theorem 2. Assume that the matrices A λ and the vectors b λ satisfy A λ b λ = A λ ⊤ b λ = 0 for every λ ∈ Λ. Assume in addition that Σ is an unbiased estimator of Σ and is independent of Y . Let fSEWA denote the exponentially weighted aggregate of the (symmetrized) estimators fλ

= (A λ + A λ ⊤ -A λ ⊤ A λ )Y + b λ with the weights (2.
2) defined via the risk estimate runb λ . Then, under the conditions β ≥ 4|||Σ||| and

π λ ∈ Λ : Tr( ΣA λ ) ≤ Tr( ΣA λ ⊤ A λ ) = 1 a.s. (C) it holds that E fSEWA -f 2 n ≤ inf p∈P Λ Λ E fλ -f 2 n p(dλ) + β n K(p, π) . (2.9)
To understand the scope of condition (C), let us present several cases of widely used linear estimators for which this condition is satisfied.

• The simplest class of matrices A λ for which condition (C) holds true are orthogonal projections. Indeed, if A λ is a projection matrix, it satisfies

A λ ⊤ A λ = A λ and, therefore, Tr( ΣA λ ) = Tr( ΣA λ ⊤ A λ ). • When the matrix Σ is diagonal, then a sufficient condition for (C) is a ii ≤ n j=1 a 2 ji .
Consequently, (C) holds true for matrices having only zeros on the main diagonal. For instance, the kNN filter in which the weight of the observation Y i is replaced by zero, i.e., a ij = 1 j∈{j i,1 ,...,j i,k } /k satisfies this condition.

• Under a little bit more stringent assumption of homoscedasticity, i.e., when Σ = σ 2 I n×n , if the matrices A λ are such that all the non-zero elements of each row are equal and sum up to one (or a quantity larger than one) then Tr(A λ ) = Tr(A λ ⊤ A λ ) and (C) is fulfilled. A notable example of linear estimators that satisfy this condition are Nadaraya-Watson estimators with rectangular kernel and nearest neighbor filters.

Discussion

. Before elaborating on the main results stated in the previous section, by extending them to inverse problems and by deriving adaptive procedures, let us discuss some aspects of the presented OIs.

3.1. Assumptions on Σ. In some rare situations, the matrix Σ is known and it is natural to use Σ = Σ as unbiased estimator. Besides this not very realistic situation, there are at least two contexts in which it is reasonable to assume that an unbiased estimator of Σ, independent of Y , is available.

The first case corresponds to problems in which a signal can be recorded several times by the same device, or once but by several identical devices. For instance, this is the case when an object is photographed many times by the same digital camera during a short time period. Let Z 1 , . . . , Z N be the available signals, which can be considered as i.i.d. copies of an n-dimensional Gaussian vector with mean f and covariance matrix Σ Z . Then, defining

Y = (Z 1 + . . . + Z N )/N and Σ Z = (N -1) -1 (Z 1 Z ⊤ 1 + . . . + Z N Z ⊤ N -N Y Y ⊤ )
, we find ourselves within the framework covered by previous theorems. Indeed,

Y ∼ N n (f , Σ Y ) with Σ Y = Σ Z /N and Σ Y = Σ Z /N is an unbiased estimate of Σ Y , independent of Y .
Note that our theory applies in this setting for every integer N ≥ 2.

The second case is when the dominating part of the noise comes from the device which is used for recording the signal. In this case, the practitioner can use the device in order to record a known signal, g. In digital image processing, g can be a black picture. This will provide a noisy signal Z drawn from Gaussian distribution N n (g, Σ), independent of Y which is the signal of interest. Setting Σ = (Zg)(Zg) ⊤ , one ends up with an unbiased estimator of Σ, which is independent of Y .

OI in expectation versus OI with high probability.

All the results stated in this work provide sharp non-asymptotic bounds on the expected risk of EWA. It would be insightful to complement this study by risk bounds that hold true with high probability. There is a common opinion in the statistical and machine learning community that such kind of results, especially popular in machine learning, do not hold for EWA and its variations. However, the negative results proved in Audibert [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF] (see also [START_REF] Lecué | On the optimality of the aggregate with exponential weights for low temperatures[END_REF]Thm. A]), and underlying this opinion are very frequently over-interpreted. In fact, [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF] only proved that there is no fixed value of temperature parameter β for which the averaged version of EWA satisfies sharp OIs with high probability uniformly over the set of all possible probability distributions. So it may very well happen that an OI with high probability holds true for EWA with a temperature parameter depending on the distribution of the data. In addition, all the existing theoretical results, even those bounding the expected risk, advocate for selecting the temperature as a function of the data distribution. This is also the case for our results, since β is required to be larger than a multiple of the spectral norm of the noise covariance matrix. So, there is no reason to bury EWA; we believe that it is possible to get sharp OIs with high probability in the context of the present work and are now working in this direction.

There are at least two other reasons which make us believe that optimal OIs with high probability are possible to obtain for EWA. First, Lecué and Mendelson [42, Thm. C] proved this type of results in the model of regression with random design, under some strong assumptions involving both constituent estimators and the loss function. Second, several empirical studies (see, for instance, [START_REF] Dai | Greedy Model Averaging[END_REF]) demonstrated that EWA has a smaller risk than some of its competitors, such as the empirical star procedure [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF], which are provably optimal in the sense of OIs with high probability. The extensive numerical study conducted in the present paper, as well as those of Rigollet and Tsybakov [START_REF] Rigollet | Sparse estimation by exponential weighting[END_REF] on particular applications of EWA, explains our optimism concerning provability of OIs in probability for EWA.

3.3.

Relation to previous work and limits of our results. The OI of the previous section require various conditions on the constituent estimators fλ = A λ Y + b λ . One may wonder how general these conditions are and is it possible to extend these OIs to more general fλ 's. Although this work does not answer this question, we can sketch some elements of response.

First of all, we stress that the conditions of the present paper relax significantly those of previous results existing in statistical literature. For instance, Kneip [START_REF] Kneip | Ordered linear smoothers[END_REF] considered only linear estimators, i.e., b λ ≡ 0 and, more importantly, only ordered set of commuting matrices A λ . The ordering assumption is dropped in Leung and Barron [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF], in the case of projection matrices. Note that neither of these assumptions is satisfied for the families of Pinsker and Tikhonov-Philipps estimators. The present work strengthens existing results in considering more general, affine estimators extending both projection matrices and ordered commuting matrices.

Despite the advances achieved in this work, there are still interesting cases that are not covered by our theory. We now introduce a family of estimators commonly used in image processing, that do not satisfy our assumptions. In recent years, non-local means (NLM) became quite popular in image processing [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. This method of signal denoising, shown to be tied in with EWA [START_REF] Salmon | NL-Means and aggregation procedures[END_REF], removes noise by exploiting signals self-similarities. We briefly define the NLM procedure in the case of one-dimensional signals.

Assume that a vector Y = (y 1 , . . . , y n ) ⊤ given by (1.1) is observed with

f i = f (i/n), i = 1, . . . , n, for some function f : [0, 1] → R. For a fixed "patch-size" k ∈ {1, . . . , n}, let us define f [i] = (f i , f i+1 , . . . , f i+k-1 ) ⊤ and Y [i] = (y i , y i+1 , . . . , y i+k-1 ) ⊤ for every i = 1, . . . , n -k + 1. The vectors f [i] and Y [i]
are respectively called true patch and noisy patch. The NLM consists in regarding the noisy patches Y [i] as constituent estimators for estimating the true patch f [i 0 ] by applying EWA. One easily checks that the constituent estimators

Y [i] are affine in Y [i 0 ] , that is Y [i] = A i Y [i 0 ] + b i with A i and b i independent of Y [i 0 ] . Indeed, if the distance between i and i 0 is larger than k, then Y [i] is independent of Y [i 0 ] and, therefore, A i = 0 and b i = Y [i] . If |i -i 0 | < k,
then the matrix A i is a suitably chosen shift matrix and b i is the projection of Y [i] onto the orthogonal complement of the image of A i . Unfortunately, these matrices {A i } and vectors {b i } do not fit our framework, i.e., the assumption

A i b i = A ⊤ i b i = 0 is not satisfied.
Finally, our proof technique is specific to affine estimators. Its extension to estimators defined as a more complex function of the data will certainly require additional tools and is a challenging problem for future research. Yet, it seems unlikely to get sharp OIs with optimal remainder term for a fairly general family of constituent estimators (without data-splitting), since this generality inherently increases the risk of overfitting.

4. Ill-posed inverse problems and group-weighting. As explained in [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF][START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF], the model of heteroscedastic regression is well suited for describing inverse problems. In fact, let T be a known linear operator on some Hilbert space H, with inner product •|• H . For some h ∈ H, let Y be the random process indexed by g ∈ H such that

Y = T h + εξ ⇐⇒ Y (g) = T h|g H + εξ(g), ∀g ∈ H , (4.1) 
where ε > 0 is the noise magnitude and ξ is a white Gaussian noise on H, i.e., for any g 1 , . . . , g k ∈ H the vector Y (g 1 ), . . . , Y (g k ) is Gaussian with zero mean and covariance matrix { g i |g j H }. The problem is then the following: estimate the element h assuming the value of Y can be measured for any given g. It is customary to use as g, the eigenvectors of the adjoint T * of T . Under the condition that the operator In view of (4.1), it holds that:

T * T is compact, the SVD yields T φ k = b k ψ k and T * ψ k = b k φ k , for k ∈ N,
Y (ψ k ) = h|φ k H b k + εξ(ψ k ), k ∈ N. (4.2)
Since in practice only a finite number of measurements can be computed, it is natural to assume that the values Y (ψ k ) are available only for k smaller than some integer n. Under the assumption that b k = 0 the last equation is equivalent to (1.1) with

f i = h|φ i H and Σ = diag(σ 2 i , i = 1, 2, . . .) for σ i = εb -1 i .
Examples of inverse problems to which this statistical model has been successfully applied are derivative estimation, deconvolution with known kernel, computerized tomography-see [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF] and the references therein for more applications.

For very mildly ill-posed inverse problems, i.e., when the singular values b k of T tend to zero not faster than any negative power of k, the approach presented in Section 2 will lead to satisfactory results. Indeed, by choosing β = 8|||Σ||| or β = 4|||Σ|||, the remainder term in (2.8) and (2.9) becomes-up to a logarithmic factor-proportional to max 1≤k≤n b -2 k /n, which is the optimal rate in the case of very mild ill-posedness.

However, even for mildly ill-posed inverse problems, the approach developed in previous section becomes obsolete since the remainder blows up when n increases to infinity. Furthermore, this is not an artifact of our theoretical results, but rather a drawback of the aggregation strategy adopted in the previous section. Indeed, the posterior probability measure π defined by (2.2) can be seen as the solution of the entropy-penalized empirical risk minimization problem:

πn = arg inf p Λ rλ p(dλ) + β n K(p, π) , (4.3) 
where the inf is taken over the set of all probability distributions. It means the same regularization parameter β is employed for estimating both the coefficients f i = h|φ i H corrupted by noise of small magnitude and those corrupted by large noise. Since we place ourselves in the setting of known operator T and, therefore, known noise levels, such a uniform treatment of all coefficients is unreasonable. It is more natural to upweight the regularization term in the case of large noise downweighting the data fidelity term and, conversely, to downweight the regularization in the case of small noise. This motivates our interest in the grouped EWA (or GEWA).

Let us consider a partition B 1 , . . . , B J of the set {1, . . . , n}: B j = {T j + 1, . . . , T j+1 }, for some integers 0 = T 1 < T 2 < . . . < T J+1 = n. To each element B j of this partition, we associate the data sub-vector Y j = (Y i : i ∈ B j ) and the sub-vector of true function f j = (f i : i ∈ B j ). As in previous sections, we are concerned by the aggregation of affine estimators fλ = A λ Y + b λ but here we will assume the matrices A λ are block-diagonal:

A λ =      A 1 λ 0 . . . 0 0 A 2 λ . . . 0 . . . . . . . . . . . . 0 0 . . . A J λ      , with A j λ ∈ R (T j+1 -T j )×(T j+1 -T j ) .
Similarly, we define f j λ and b j λ as the sub-vectors of fλ and b λ , respectively, corresponding to the indices belonging to B j . We will also assume that the noise covariance matrix Σ and its unbiased estimate Σ are block-diagonal with (T j+1 -T j ) × (T j+1 -T j ) blocks Σ j and Σ j , respectively. These notations imply in particular that f j λ = A j λ Y j + b j λ for every j = 1, . . . , J. Moreover, the unbiased risk estimate runb 

= Y j - f j λ + 2 n Tr( Σ j A j λ ) - 1 n Tr[ Σ j ], j = 1, . . . , J.
To state the analogues of Theorems 1 and 2 we introduce the following settings.

Setting 1: For all λ, λ ′ ∈ Λ and j ∈ {1, . . . , J}, A j λ are symmetric and satisfy

A j λ A j λ ′ = A j λ ′ A j λ , A j λ Σ j + Σ j A j λ
0 and b j λ = 0. For a temperature vector β = (β 1 , . . . , β J ) ⊤ and a prior π, we define GEWA as

f j GEWA = Λ f j λ πj (dλ)
, where πj (dλ) = θ j (λ)π(dλ) with

θ j (λ) = exp(-nr j,unb λ /β j ) Λ exp(-nr j,unb ω /β j )π(dω) . (4.4)
Setting 2: For every j = 1, . . . , J and for every λ belonging to a set of π-measure one, the matrices A λ satisfy a.s. the inequality Tr( Σ j A j λ ) ≤ Tr( Σ j (A j λ ) ⊤ A j λ ) while the vectors b λ are such that A j λ b j λ = (A j λ ) ⊤ b j λ = 0. In this case, for a temperature vector β = (β 1 , . . . , β J ) ⊤ and a prior π, we define GEWA as

f j GEWA = Λ fλ j πj (dλ), where fλ j = (A j λ + (A j λ ) ⊤ -(A j λ ) ⊤ A j λ )Y j + b j λ
and πj is defined by (4.4). Note that this setting is the grouped version of the SEWA.

Theorem 3. Assume that Σ is unbiased and independent of Y . Under Setting 1, if β j ≥ 8|||Σ j ||| for all j = 1, . . . , J, then

E fGEWA -f 2 n ≤ J j=1 inf p j Λ E f j λ -f j 2 n p j (dλ) + β j n K(p j , π) . (4.5) 
Under Setting 2, this inequality holds true if β j ≥ 4|||Σ j ||| for every j = 1, . . . , J.

As we shall see in Section 6, this theorem allows us to propose an estimator of the unknown signal which is adaptive w.r.t. the smoothness properties of the underlying signal and achieves the minimax rates and constants over the Sobolev ellipsoids provided that the operator T is mildly ill-posed, i.e., its singular values decrease at most polynomially.

Examples of sharp oracle inequalities.

In this section, we discuss consequences of the main result for specific choices of prior measures. For conveying the main messages of this section it is enough to focus on the Settings 1 and 2 in the case of only one group (J = 1). 5.1. Discrete oracle inequality. In order to demonstrate that Inequality (4.5) can be reformulated in terms of an OI as defined by (2.1), let us consider the case when the prior π is discrete, that is, π(Λ 0 ) = 1 for a countable set Λ 0 ⊂ Λ, and w.l.o.g Λ 0 = N. Then, the following result holds true.

Proposition 1. Let Σ be unbiased, independent of Y and π be supported by N. Under Setting 1 with J = 1 and β = β 1 ≥ 8|||Σ||| the aggregate fGEWA satisfies the inequality

E fGEWA -f 2 n ≤ inf ℓ∈N:π ℓ >0 E fℓ -f 2 n + β log(1/π ℓ ) n .
(5.1)

Furthermore, (5.1) holds true under Setting 2 for β ≥ 4|||Σ|||.

Proof. It suffices to apply Thm. 3 and to upper-bound the right-hand side by the minimum over all Dirac measures p = δ ℓ such that π ℓ > 0.

This inequality can be compared to Corollary 2 in [5, Section 4.3]. Our result has the advantage of having factor one in front of the expectation of the left-hand side, while in [START_REF] Baraud | Estimator selection in the Gaussian setting[END_REF] a constant much larger than 1 appears. However, it should be noted that the assumptions on the (estimated) noise covariance matrix are much weaker in [START_REF] Baraud | Estimator selection in the Gaussian setting[END_REF].

Continuous oracle inequality.

It may be useful in practice to combine a family of affine estimators indexed by an open subset of R M for some M ∈ N (e.g., , to build an estimator nearly as accurate as the best kernel estimator with fixed kernel and varying bandwidth). To state an oracle inequality in such a "continuous" setup, let us denote by d 2 (λ, ∂Λ) the largest real τ > 0 such that the ball centered at λ of radius τ -hereafter denoted by B λ (τ )-is included in Λ. Let Leb(•) be the Lebesgue measure in R M . Proposition 2. Let Σ be unbiased, independent of Y . Let Λ ⊂ R M be an open and bounded set and let π be the uniform distribution on Λ. Assume that the mapping λ → r λ is Lipschitz continuous, i.e., |r λ ′r λ | ≤ L r λ ′λ 2 , ∀λ, λ ′ ∈ Λ. Under Setting 1 with J = 1 and β = β 1 ≥ 8|||Σ||| the aggregate fGEWA satisfies the inequality

E fGEWA -f 2 n ≤ inf λ∈Λ E fλ -f 2 n + βM n log √ M 2 min(n -1 , d 2 (λ, ∂Λ)) + L r + β log Leb(Λ) n . (5.2) 
Furthermore, (5.2) holds true under Setting 2 for every β ≥ 4|||Σ|||.

Proof. It suffices to apply assertion i) of Theorem 1 and to upper-bound the righthand side in Ineq. (2.8) by the minimum over all measures having as density Note that it is not very stringent to require the risk function r λ to be Lipschitz continuous, especially since this condition needs not be satisfied uniformly in f . Let us consider the ridge regression: for a given design matrix 

p λ * ,τ * (λ) = 1l B λ * (τ * ) (λ)/Leb(B λ * (τ * )). Choosing τ * = min(n -1 , d 2 (λ * , ∂Λ)) such that B λ * (τ * ) ⊂ Λ, the measure p λ * ,τ * (λ)
X ∈ R n×p , A λ = X(X ⊤ X + γ n λI n×n ) -1 X ⊤ and b λ = 0 with λ ∈ [λ * , λ * ],

Sparsity oracle inequality.

The continuous oracle inequality stated in the previous subsection is well adapted to the problems in which the dimension M of Λ is small w.r.t. the sample size n (or, more precisely, the signal to noise ratio n/|||Σ|||). When this is not the case, the choice of the prior should be done more carefully. For instance, consider Λ ⊂ R M with large M under the sparsity scenario: there is a sparse vector λ * ∈ Λ such that the risk of f λ * is small. Then, it is natural to choose a prior that favors sparse λ's. This can be done in the same vein as in [START_REF] Dalalyan | Aggregation by Exponential Weighting, Sharp Oracle Inequalities and Sparsity[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF][START_REF] Dalalyan | Mirror Averaging with Sparsity Priors[END_REF][START_REF] Dalalyan | Sparse Regression Learning by Aggregation and Langevin Monte-Carlo[END_REF], by means of the heavy tailed prior:

π(dλ) ∝ M m=1 1 (1 + |λ m /τ | 2 ) 2 1l Λ (λ), (5.3) 
where τ > 0 is a tuning parameter.

Proposition 3. Let Σ be unbiased, independent of Y . Let Λ = R M and let π be defined by (5.3). Assume that the mapping λ → r λ is continuously differentiable and, for some M ×M matrix M, satisfies:

r λ -r λ ′ -∇r ⊤ λ ′ (λ -λ ′ ) ≤ (λ -λ ′ ) ⊤ M(λ -λ ′ ), ∀λ, λ ′ ∈ Λ. (5.4)
Under Setting 1 if β ≥ 8|||Σ|||, then the aggregate fEWA = fGEWA satisfies:

E fGEWA -f 2 n ≤ inf λ∈R M E fλ -f 2 n + 4β n M m=1 log 1 + |λ m | τ + Tr(M)τ 2 .
(5.5)

Moreover, (5.5) holds true under Setting 2 if β ≥ 4|||Σ|||.

Let us discuss here some consequences of this sparsity oracle inequality. First of all, consider the case of (linearly) combining frozen estimators, i.e., when fλ = M j=1 λ j ϕ j with some known functions ϕ j . Then, it is clear that r

λ -r λ ′ -∇r ⊤ λ ′ (λ -λ ′ ) = 2(λ -λ ′ ) ⊤ Φ(λ -λ ′ )
, where Φ is the Gram matrix defined by Φ i,j = ϕ i |ϕ j n . So the condition in Proposition 3 consists in bounding the Gram matrix of the atoms ϕ j . Let us remark that in this case-see, for instance, [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF][START_REF] Dalalyan | Sparse Regression Learning by Aggregation and Langevin Monte-Carlo[END_REF]-Tr(M) is on the order of M and the choice τ = β/(nM ) ensures that the last term in the right-hand side of Eq. (5.5) decreases at the parametric rate 1/n. This is the choice we recommend for practical applications.

As a second example, let us consider the case of a large number of linear estimators ĝ1 = G 1 Y , . . . , ĝM = G M Y satisfying conditions of Setting 1 and such that max m=1,...,M |||G m ||| ≤ 1. Assume we aim at proposing an estimator mimicking the behavior of the best possible convex combination of a pair of estimators chosen among ĝ1 , . . . , ĝM . This task can be accomplished in our framework by setting Λ = R M and fλ = λ 1 ĝ1 + . . . λ M ĝM , where λ = (λ 1 , . . . , λ M ). Remark that if {ĝ m } satisfies conditions of Setting 1, so does { fλ }. Moreover, the mapping λ → r λ is quadratic with Hessian matrix ∇ 2 r λ given by the en-

tries 2 G m f |G m ′ f n + 2 n Tr(G m ′ ΣG m ), m, m ′ = 1, .
. . , M . It implies that Inequality (5.4) holds with M = ∇ 2 r λ /2. Therefore, denoting by σ 2 i the ith diagonal entry of Σ and setting σ = (σ 1 , . . . , σ n ), we get Tr(M)

≤ ||| M m=1 G 2 m ||| f 2 n + σ 2 n ≤ M f 2 n + σ 2 n . Applying Proposition 3 with τ = β/(nM ), we get E fEWA -f 2 n ≤ inf α,m,m ′ E αĝ m + (1 -α)ĝ m ′ -f 2 n + 8β n log 1 + M n β 1/2 + β n f 2 n + σ 2 n , (5.6) 
where the inf is taken over all α ∈ [0, 1] and m, m ′ ∈ {1, . . . , M }. This inequality is derived from (5.5) by upper-bounding the inf λ∈R M by the infimum over λ's having at most two nonzero coefficients, λ m 0 and λ m ′ 0 , that are non-negative and sum to one: λ m 0 + λ m ′ 0 = 1. To get (5.6), one simply notes that only two terms of the sum m log 1 + |λ m |τ -1 are non-zero and each of them is not larger than log 1 + τ -1 . Thus, one can achieve using EWA the best possible risk over the convex combinations of a pair of linear estimators-selected from a large (but finite) family-at the price of a residual term that decreases at the parametric rate up to a log factor.

5.4.

Oracle inequalities for varying-block-shrinkage estimators. Let us consider now the problem of aggregation of two-block shrinkage estimators. This means that the constituent estimators have the following form:

for λ = (a, b, k) ∈ [0, 1] 2 × {1, . . . , n} := Λ, fλ = A λ Y where A λ = diag a1l(i ≤ k) + b1l(i > k), i = 1, • • • , n .
Let us choose the prior π as uniform on Λ. Proposition 4. Let fEWA be the exponentially weighted aggregate having as constituent estimators two-block shrinkage estimators A λ Y . If Σ is diagonal, then for any λ ∈ Λ and for any β ≥ 8|||Σ|||,

E fEWA -f 2 n ≤ E fλ -f 2 n + β n 1 + log n 2 f 2 n + n Tr(Σ) 12β . (5.7) 
In the case Σ = I n×n , this result is comparable to [43, p. 20, Thm. 2.49], which states that in the homoscedastic regression model (Σ = I n×n ), EWA acting on two-block positive-part James-Stein estimators satisfies, for any λ ∈ Λ such that 3 ≤ k ≤ n -3 and for β = 8, the oracle inequality

E f Leung -f 2 n ≤ E fλ -f 2 n + 9 n + 8 n min K>0 K ∨ log n -6 K -1 .
(5.8)

6. Application to minimax adaptive estimation. Pinsker proved in his celebrated paper [START_REF] Pinsker | Optimal filtration of square-integrable signals in Gaussian noise[END_REF], that in the model (1.1) the minimax risk over ellipsoids can be asymptotically attained by a linear estimator. Let us denote by θ k (f ) = f |ϕ k n the coefficients of the (orthogonal) discrete cosine 1 (DCT) transform of f , hereafter denoted by Df . Pinsker's resultrestricted to Sobolev ellipsoids

F D (α, R) = f ∈ R n : n k=1 k 2α θ k (f ) 2 ≤ R -states that, as n → ∞, the equivalences inf f sup f ∈F D (α,R) E f -f 2 n ∼ inf A sup f ∈F D (α,R) E AY -f 2 n (6.1) ∼ inf w>0 sup f ∈F D (α,R) E A α,w Y -f 2 n (6.2)
hold [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]Theorem 3.2], where the first inf is taken over all possible estimators f and A α,w = D ⊤ diag (1-k α /w) + ; k = 1, . . . , n D is the Pinsker filter in the discrete cosine basis. In simple words, this implies that the (asymptotically) minimax estimator can be chosen from the quite narrow class of linear estimators with Pinsker's filter. However, it should be emphasized that the minimax linear estimator depends on the parameters α and R, that are generally unknown. An (adaptive) estimator, that does not depend on (α, R) and is asymptotically minimax over a large scale of Sobolev ellipsoids has been proposed by Efromovich and Pinsker [START_REF] Efromovich | A self-training algorithm for nonparametric filtering[END_REF]. The next result, that is a direct consequence of Theorem 1, shows that EWA with linear constituent estimators is also asymptotically sharp adaptive over Sobolev ellipsoids.

Proposition 5. Let λ = (α, w) ∈ Λ = R2 + and consider the prior

π(dλ) = 2n -α/(2α+1) σ 1 + n -α/(2α+1) σ w 3 e -α dαdw, (6.3) 
where n σ = n/σ 2 . Then, in model (1.1) with homoscedastic errors, the aggregate fEWA based on the temperature β = 8σ 2 and the constituent estimators f α,w = A α,w Y (with A α,w being the Pinsker filter) is adaptive in the exact minimax sense 2 on the family of classes {F D (α, R) :

α > 0, R > 0}.
It is worth noting that the exact minimax adaptivity property of our estimator fEWA is achieved without any tuning parameter. All previously proposed methods that are provably adaptive in exact minimax sense depend on some parameters such as the lengths of blocks for blockwise Stein [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF] and Efromovich-Pinsker [START_REF] Efromovich | Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression[END_REF] estimators or the step of discretization and the maximal value of bandwidth [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF]. Another nice property of the estimator fEWA is that it does not require any pilot estimator based on the data splitting device [START_REF] Gaïffas | Hyper-Sparse Optimal Aggregation[END_REF].

We now turn to the setup of heteroscedastic regression, which corresponds to ill-posed inverse problems as described in Section 4. To achieve adaptivity in the exact minimax sense, we make use of fGEWA , the grouped version of the exponentially weighted aggregate. We assume hereafter that the matrix Σ is diagonal with diagonal entries σ 2 1 , . . . , σ 2 n satisfying the following property:

∃ σ * , γ > 0 such that σ 2 k = σ 2 * k 2γ (1 + o k (1)) as k → ∞. (6.4)
This kind of problems arise when T is a differential operator or the Radon transform [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF]Section 1.3]. To handle such situations, we define the groups in the same spirit as the weakly geometrically increasing blocks in [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation[END_REF]. Let ν = ν n be a positive integer that increases as n → ∞. Set ρ n = ν -1/3 n and define

T j = (1 + ν n ) j-1 -1, j = 1, 2, T j-1 + ⌊ν n ρ n (1 + ρ n ) j-2 ⌋, j = 3, 4, . . . , (6.5) 
where ⌊x⌋ stands for the largest integer strictly smaller than x. Let J be the smallest integer j such that T j ≥ n. We redefine T J+1 = n and set B j = {T j + 1, . . . , T j+1 } for all j = 1, . . . , J.

Proposition 6. Let the groups B 1 , . . . , B J be defined as above with ν n satisfying log

ν n / log n → ∞ and ν n → ∞ as n → ∞. Let λ = (α, w) ∈ Λ = R 2
+ and consider the prior

π(dλ) = 2n -α/(2α+2γ+1) 1 + n -α/(2α+2γ+1) w 3 e -α dαdw. (6.6)
Then, in model (1.1) with diagonal covariance matrix Σ = diag(σ 2 k ; 1 ≤ k ≤ n) satisfying condition (6.4), the aggregate fGEWA (under Setting 1) based on the temperatures β j = 8 max i∈B j σ 2 i and the constituent estimators f α,w = A α,w Y (with A α,w being the Pinsker filter) is adaptive in the exact minimax sense on the family of classes {F(α, R) : α > 0, R > 0}.

Note that this result provides an estimator attaining the optimal constant in the minimax sense when the unknown signal lies in an ellipsoid. This property holds because minimax estimators over the ellipsoids are linear. For other subsets of R n , such as hyper-rectangles, Besov bodies and so on, this is not true anymore. However, as proved by Donoho, Liu and MacGibbon [START_REF] Donoho | Minimax risk over hyperrectangles, and implications[END_REF], for orthosymmetric quadratically convex sets the minimax linear estimators have a risk which is within 25% of the minimax risk among all estimates. Therefore, following the approach developed here for the set of ellipsoids, it is also possible to prove that GEWA can lead to an adaptive estimator whose risk is within a factor 5/4 of the minimax risk, e.g., , for a broad class of hyperrectangles.

Experiments.

In this section, we present some numerical experiments on synthetic data, by focusing only on the case of homoscedastic Gaussian noise (Σ = σ 2 I n×n ) with known variance. Following the philosophy of reproducible research, a toolbox is made available freely for download at the following address http://people.math.jussieu.fr/ ~salmon/code/index_codes.php. Additional details and numerical experiments can be found in [START_REF] Dalalyan | Competing against the best nearest neighbor filter in regression[END_REF][START_REF] Salmon | Optimal aggregation of affine estimators[END_REF].

We evaluate different estimation routines on several 1D signals, introduced by Donoho and Johnstone [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] and considered as a benchmark in the literature on signal processing. The six signals we retained for our experiments because of their diversity are depicted in Figure 1. Since these signals are non-smooth, we have also carried out experiments on their smoothed versions obtained by taking the antiderivative (cf., Figure 1). Experiments on non-smooth (resp. smooth) signals are referred to as Experiment I (resp. Experiment II). In both cases, prior to applying estimation routines, we normalize the (true) sampled signal to have an empirical norm equal to one and use the DCT denoted by θ(Y ) = θ 1 (Y ), . . . , θ n (Y )

⊤ .

The four tested estimation routines-including EWA-are detailed below.

• soft-thresholding (ST) [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]: For a given shrinkage parameter t, the soft-thresholding estimator of the vector of DCT coefficients θ k (f ) is

θ k = sgn θ k (Y ) |θ k (Y )| -σt + . (7.1)
In our experiments, we use the threshold minimizing the estimated unbiased risk defined via Stein's lemma. This procedure is referred to as SURE-shrink [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF]. • Blockwise James-Stein (BJS) shrinkage [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF]: The set of indices {1, . . . , n} is partitioned into N = [n/ log(n)] non-overlapping blocks B 1 , B 2 , . . . , B N of equal size L (if n is not a multiple of N , the last block may be of smaller size than all the others). The corresponding blocks of true coefficients θ B k (f ) = θ j (f ) j∈B k are then estimated by:

θ B k = 1 - λLσ 2 S 2 k (Y ) + θ B k (Y ), k = 1, . . . , N , (7.2) 
with blocks of noisy coefficients

θ B k (Y ), S 2 k = θ B k (Y ) 2 
2 and λ = 4.50524. • Unbiased risk estimate (URE) minimization with Pinsker's filters [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF]: This method consists in using a Pinsker filter, as defined in Section 6 above, with a datadriven choice of parameters α and w. This choice is done by minimizing an unbiased estimate of the risk over a suitably chosen grid for the values of α and w. Here, we use geometric grids ranging from 0.1 to 100 for α and from 1 to n for w. Thus, the bi-dimensional grid used in all the experiments has 100 × 100 elements. We refer to [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF] for the closed-form formula of the unbiased risk estimator and further details. • EWA on Pinsker's filters: We consider the same finite family of linear filters (defined by Pinsker's filters) as in the URE routine described above. According to Proposition 1, this leads to an estimator nearly as accurate as the best Pinsker's estimator in the given family.

To report the result of our experiments, we have also computed the best linear smoother based on a Pinsker filter chosen among the candidates that we used for defining URE and EWA. By best smoother we mean the one minimizing the squared error (it can be computed since we know the ground truth). This pseudo-estimator will be referred to as oracle. Results summarized in Table 1 for Experiment I and Table 2 for Experiment II correspond to the average over 1000 trials of the mean squared error (MSE) from which we subtract the MSE of the oracle and multiply the resulting difference by the sample size. We report the results for σ = 0.33 and for n ∈ {2 8 , 2 9 , 2 10 , 2 11 }.

Simulations show that EWA and URE have very comparable performances and are significantly more accurate than soft-thresholding and block James-Stein (cf., Table 1) for every size n of signals considered. Improvements are particularly important when signals have large peaks or discontinuities. In most cases, EWA also outperforms URE, but differences are less pronounced. One can also observe that for smooth signals, the difference of MSEs between EWA and the oracle, multiplied by n, remains nearly constant when n varies. This is in agreement with our theoretical results in which the residual term decreases to zero inversely proportionally to n.

Of course, soft-thresholding and blockwise James-Stein procedures have been designed

for being applied to the wavelet transform of a Besov smooth function, rather than to the Fourier transform of a Sobolev-smooth function. However, the point here is not to demonstrate the superiority of EWA as compared to ST and BJS procedures. The point is to stress the importance of having sharp adaptivity up to optimal constant and not simply adaptivity in the sense of rate of convergence. Indeed, the procedures ST and BJS are provably rateadaptive when applied to Fourier transform of a Sobolev-smooth function, but they are not sharp adaptive-they do not attain the optimal constant-whereas EWA and URE do attain. 8. Summary and future work. In this paper, we have addressed the problem of aggregating a set of affine estimators in the context of regression with fixed design and heteroscedastic noise. Under some assumptions on the constituent estimators, we have proven that EWA with a suitably chosen temperature parameter satisfies PAC-Bayesian type inequality, from which different types of oracle inequalities have been deduced. All these inequalities are with leading constant one and rate-optimal residual term. As an application of our results, we have shown that EWA acting on Pinsker's estimators, produces an adaptive estimator in the exact minimax sense.

Next in our agenda is carrying out an experimental evaluation of the proposed aggregate using the approximation schemes described by Dalalyan and Tsybakov [START_REF] Dalalyan | Sparse Regression Learning by Aggregation and Langevin Monte-Carlo[END_REF], Rigollet and Tsybakov [START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF][START_REF] Rigollet | Sparse estimation by exponential weighting[END_REF] and Alquier and Lounici [START_REF] Alquier | PAC-Bayesian Bounds for Sparse Regression Estimation with Exponential Weights[END_REF], with a special focus on the problems involving large scale data.

Although we do not assume the covariance matrix Σ of the noise to be known, our approach relies on an unbiased estimator of Σ which is independent on the observed signal and on an upper bound on the largest singular value of Σ. In some applications, such an information may be hard to obtain and it can be helpful to relax the assumptions on Σ. This is another interesting avenue for future research for which, we believe, the approach developed by Giraud [START_REF] Giraud | Mixing least-squares estimators when the variance is unknown[END_REF] 

APPENDIX A: PROOFS OF MAIN THEOREMS

We develop now the detailed proofs of the results stated in the manuscript.

A.1. Stein's lemma. The proofs of our main results rely on Stein's lemma [START_REF] Stein | Estimation of the mean of a multivariate distribution[END_REF], recalled below, providing an unbiased risk estimate for any estimator that depends sufficiently smoothly on the data vector Y .

Lemma 1. Let Y be a random vector drawn form the Gaussian distribution N n (f , Σ). If the estimator f is a.e. differentiable in Y and the elements of the matrix ∇

• f ⊤ := (∂ i fj ) have finite first moment, then r = Y -f 2 n + 2 n Tr[Σ(∇ • f ⊤ )] - 1 n Tr[Σ],
is an unbiased estimate of r, i.e., E[r] = r.

The proof can be found in [60, p.157]. We apply Stein's lemma to the affine estimators fλ = A λ Y + b λ , with A λ an n × n deterministic real matrix and b λ ∈ R n a deterministic vector. We get that if Σ is an unbiased estimator of Σ, then

runb λ = Y -fλ 2 n + 2 n Tr[ ΣA λ ] - 1 n Tr[ Σ]
is an unbiased estimator of the risk

r λ = E[ fλ -f 2 n ] = (A λ -I n×n )f + b λ 2 n + 1 n Tr[A λ ΣA ⊤ λ ].
A.2. An auxiliary result. Prior to proceeding with the proof of main theorems, we prove an important auxiliary result which is the central ingredient of the proofs for our main results.

Lemma 2. Let assumptions of Lemma 1 be satisfied. Let { fλ : λ ∈ Λ} be a family of estimators of f and {r λ : λ ∈ Λ} a family of risk estimates such that the mapping Y → ( fλ , rλ ) is a.e. differentiable for every λ ∈ Λ. Let runb λ be the unbiased risk estimate of fλ given by Stein's lemma. Interchanging differentiation and integration, we get

Λ fEWA ∇ Y θ(Y , λ) ⊤ π(dλ) = fEWA ∇ Y Λ θ(Y , λ)π(dλ) = 0
and, therefore, we come up with the following expression for rEWA :

rEWA = Λ runb λ -fλ -f n 2 n + 2 ∇ Y log θ(λ)|Σ( fλ -fEWA ) n π(dλ) = Λ runb λ -fλ -fEWA 2 n -2nβ -1 ∇ Y rλ |Σ( fλ -fEWA ) n π(dλ).
This completes the proof of the first assertion of the lemma.

To prove the second assertion, let us observe that under the required condition and in view of the first assertion, for every β ≥ 2a it holds that rEWA ≤ Λ runb λ π(dλ) ≤ Λ rλ π(dλ) ≤ Λ rλ π(dλ) + β n K(π, π). To conclude, it suffices to remark that π is the probability measure minimizing the criterion Λ rλ p(dλ) + β n K(p, π) among all p ∈ P Λ . Thus, for every p ∈ P Λ , we have rEWA

≤ Λ rλ p(dλ) + β n K(p, π).
Taking the expectation of both sides, the desired result follows.

A.3. Proof of Theorem 1.

Assertion i).

In what follows, we use the matrix shorthands I = I n×n and A EWA Λ A λ π(dλ). We apply Lemma 2 with rλ = runb λ . To check the conditions of the second part of Lemma 2, note that in view of Eq. (2.4) and (2.6), as well as the assumptions A ⊤ λ = A λ and A λ ′ b λ = 0, we get

∇ Y runb λ = 2 n (I -A λ ) ⊤ (I -A λ )Y - 2 n (I -A λ ) ⊤ b λ = 2 n (I -A λ ) 2 Y - 2 n b λ .
Recall now that for any pair of commuting matrices P and Q the identity (I -P ) 2 = (I -Q) 2 +2 I -P +Q 2 (Q-P ) holds true. Applying this identity to P = A λ and Q = A EWA (in view of the commuting property of the A λ 's) we get the following relation:

(I -A λ ) 2 Y |Σ(A λ - A EWA )Y n = (I -A EWA ) 2 Y |Σ(A λ -A EWA )Y n -2 I -A EWA +A λ 2 (A EWA -A λ )Y |Σ(A EWA - A λ )Y n .
When one integrates over Λ with respect to the measure π, the term of the first scalar product in the right-hand side of the last equation vanishes. On the other hand,

A λ (A EWA -A λ )Y |Σ(A EWA -A λ )Y n = A λ ( fEWA -fλ )|Σ( fEWA -fλ ) n = ( fEWA -fλ )|A λ Σ( fEWA -fλ ) n = 1 2n ( fEWA -fλ ) ⊤ (A λ Σ + ΣA λ )( fEWA -fλ ) ≥ 0.
Since positive semi-definiteness of matrices ΣA λ +A λ Σ implies the one of the matrix ΣA EWA + ΣA EWA , we also have

A EWA (A EWA -A λ )Y |Σ(A EWA -A λ )Y n ≥ 0. Therefore, I - A EWA + A λ 2 (A EWA -A λ )Y |Σ(A EWA -A λ )Y n ≤ ( fEWA -fλ )|Σ( fEWA -fλ ) n = Σ 1/2 ( fEWA -fλ ) 2 n .
This inequality implies that

Λ n∇ Y runb λ |Σ( fλ -fEWA ) n π(dλ) ≥ -4 Λ Σ 1/2 ( fλ -fEWA ) 2 n π(dλ).
Therefore, the claim of Theorem 1 holds true for every β ≥ 8|||Σ|||. 

Assertion ii). Let now

) n π(dλ) = Λ 2(Y -fλ )|Σ( fλ -fEWA ) n π(dλ) = -2 Λ Σ 1/2 ( fλ -fEWA ) 2 n π(dλ).
Therefore, if β ≥ 4|||Σ|||, all the conditions required in the second part of Lemma 2 are fulfilled.

Applying this lemma, we get the desired result.

A.4. Proof of Theorem 2. We apply the result of assertion ii) of Thm. 1 to the prior π(dλ) replaced by the probability measure proportional to e

2 β Tr[ Σ(A λ -A λ ⊤ A λ )] π(dλ). This leads to E fSEWA -f 2 n ≤ inf p∈P Λ Λ E fλ -f 2 n p(dλ) + β n K(p, π) + β n E log Λ e 2 β Tr[ Σ(A λ -A λ ⊤ A λ )] π(dλ) .
Condition (C) entails that the last term is always non-negative and the result follows.

A.5. Proof of Theorem 3. Let us place ourselves in Setting 1. It is clear that E fGEWA -

f 2 n = J j=1 E f j GEWA -f j 2 n .
For each j ∈ {1, . . . , J}, since β j ≥ 8|||Σ j |||, one can apply assertion i) of Thm. 1, which leads to the desired result. The case of Setting 2 is handled in the same manner. 

E fEWA -f 2 n ≤ inf p∈P Λ Λ [|r λ -r λ * | + r λ * ] p(dλ) + β n K(p, π) .
Then, the right-hand side of the last inequality can be bounded from above by the expression in parentheses evaluated at the probability measure p given by the density p * (λ) = 1l B λ * (τ * ) (λ)/Leb(B λ * (τ * )). Assume moreover that τ * is such that B λ * (τ * ) ⊂ Λ, then using the Lipschitz condition on r λ , the bound on the risk becomes 

E fEWA -f 2 n ≤ Λ [|r λ -r λ * |+r λ * ] p * (dλ) + β n K(p * , π) ≤ r λ * +L r Λ λ -λ * 2 p * (dλ) + β n K(p * , π) ≤ r λ * + L r τ * + β n K(p * , π
E fEWA -f 2 n ≤ inf λ * ∈R M r λ * + Tr(M)τ 2 + β n K(p * , π) (B.2)
So far, the particular choice of heavy tailed prior has not been used. This choice is important to control the Kullback-Leibler divergence between two translated versions of the same distribution:

K(p * , π) = Λ log M m=1 (τ 2 + λ 2 m ) 2 (τ 2 + (λ m -λ * m ) 2 ) 2 p * (dλ) = 2 M m=1 Λ log τ 2 + λ 2 m τ 2 + (λ m -λ * m ) 2 p * (dλ) .
We bound the quotient in the above equality by

τ 2 + λ 2 m τ 2 + (λ m -λ * m ) 2 = 1 + 2τ (λ m -λ * m ) τ 2 + (λ m -λ * m ) 2 λ * m τ + (λ * m ) 2 τ 2 + (λ m -λ * m ) 2 ≤ 1 + λ * m τ + λ * m τ 2 ≤ 1 + λ * m τ 2 .
Since the last inequality is independent of λ and p * is a probability measure, the integral disappears in the previous bound on the Kullback-Leibler divergence. So we get

K(p * , π) ≤ 4 M m=1 log 1 + |λ * m | τ
. This inequality combined with (B.2) leads to the desired result.

B.3. Proof of Proposition 4.

To simplify the notation, we set σ = (σ 1 , . . . , σ n ), the vector containing the standard deviations of the errors ξ i . Let τ be a small positive number, the precise value of which will be given later. Let λ 0 = (a 0 , b 0 , k 0 ) ∈ [τ, 1τ ] 2 × {1, . . . , n} be some fixed element. Let us define the probability density function p 0

(dλ) = 1l [a 0 -τ,a 0 +τ ] (a)1l [b 0 -τ,b 0 +τ ] (b)1l(k = k 0 )(2τ ) -2 da db.
Note that for any λ = (a, b, k), the risk of the estimator A λ Y is

r λ = 1 n k i=1 (1 -a) 2 f 2 i + a 2 σ 2 i + 1 n n i=k+1 (1 -b) 2 f 2 i + b 2 σ 2 i .
In particular, the difference between the risks r λ and r λ 0 -for two different parameters λ = (a, b, k) and λ 0 = (a 0 , b 0 , k 0 ) such that k = k 0 is the same in the two cases-can be rewritten as follows:

r λ -r λ 0 = 1 n k i=1 2(a 0 -a) (1 -a 0 )f 2 i -a 0 σ 2 i + (a -a 0 ) 2 {f 2 i + σ 2 i } + 1 n n i=k+1 2(b 0 -b) (1 -b 0 )f 2 i -b 0 σ 2 i + (b -b 0 ) 2 {f 2 i + σ 2 i }
If we integrate w.r.t. the measure p 0 , the terms linear in aa 0 and bb 0 disappear and we get

Λ (r λ -r λ 0 ) p 0 (dλ) = 1 n n i=1 {f 2 i + σ 2 i } τ -τ u 2 du 2τ = τ 2 3 f 2 n + σ 2 n .
Concerning the Kullback-Leibler divergence between p 0 and π, it can be computed as follows:

K(p 0 , π) = n k=1 log p 0 (da, db, k) π(da, db, k) p 0 (da, db, k) = a 0 +τ a 0 -τ b 0 +τ b 0 -τ log n 4τ 2 da 2τ db 2τ = log n 4τ 2 . (B.3)
We can use Equation (2.8) with our choice for p 0 and π, and with the last computations, we get

E fEWA -f 2 n ≤ Λ r λ p 0 (dλ) + β n K(p 0 , π) = r λ 0 + Λ (r λ -r λ 0 )p 0 (dλ) + β n log n 4τ 2 = r λ 0 + τ 2 f 2 n + σ 2 n 3 + β n log n 4τ 2 . (B.4)
The last expression, considered as a function of τ , admits as global minimum τ

2 min = 3(β/n) f 2 n + σ 2
n . Replacing this value in (B.4), we get the risk bound:

E fEWA -f 2 n ≤ E f λ 0 -f 2 n + β n 1 + log n 2 f 2 n + σ 2 n 12β . (B.5)
Now, the desired result follows from the obvious equality n σ 2 n = Tr(Σ).

B.4. Proof of Proposition 5. We assume, without loss of generality, that the matrix n 1/2 D coincides with the identity matrix. First, let us fix α 0 > 0 and R 0 > 0, such that n -1/2 f ∈ F(α 0 , R 0 ) and define λ 0 = (α 0 , w 0 ) ∈ Λ with w 0 chosen such that the Pinsker estimator f α 0 ,w 0 is minimax over the ellipsoid F(α 0 , R 0 ).

In what follows, we set n σ = n/σ 2 , n σ,α = n -α/(2α+1) σ and we denote by p π the probability density function of π w.r.t. the Lebesgue measure on R 2 + : p π (α, w) = e -α n σ,α p w (wn σ,α ), where p w is a probability density function supported by (0, ∞) such that up w (u) du = 1. One easily checks that Let τ be a positive number such that τ ≤ min(1, α 0 /(2 log w 0 )) and choose p 0 as a translation/dilatation of π, concentrating on λ 0 when τ → 0:

p 0 (dλ) = p π λ -λ 0 τ dλ τ 2 .
In view of assertion i) of Theorem 1,

E fEWA -f 2 n ≤ r λ 0 + R 2
r α,wr α 0 ,w 0 p 0 (dλ) + β n K(p 0 , π) . (B.7)

Let us decompose the term r α,wr α 0 ,w 0 into two pieces: r α,wr α 0 ,w 0 = {r α,wr α,w 0 } + {r α,w 0r α 0 ,w 0 } and find upper bounds for the resulting terms. With the choice of estimator we did, the difference between the risk functions at (α, w) and (α, w 0 ) is: where we used the inequality τ ≤ α 0 /(2 log w 0 ). The last term to bound in inequality (B.7) requires the evaluation of the Kullback-Leibler divergence between p 0 and π. It can be done as follows: where the third equality is derived thanks to Eq. (B.6) and the relation p w ∞ = 2. Making the change of variable w = w 0 + τ un -1 σ,α and using that w 0 + τ un -1 σ,α ≤ (w 0 + u)n -1 σ,α , we get We start by setting n α,γ = n -α/(2α+2γ+1) . Let λ 0 = (α 0 , w 0 ) be a pair of real numbers s.t. f λ 0 is minimax over the Sobolev ellipsoid F(α 0 , R 0 ) and let p π be the density of π: p π (α, w) = e -α n α,γ p w (wn α,γ ), where p w is a probability density function supported by (0, ∞) such that up w (u) du = 1. Let τ be a non-negative number such that τ ≤ min(1, α 0 /(2 log w 0 )) and choose p 0 as a translation and dilatation of π, concentrating on λ 0 when τ → 0: p 0 (dλ) = p π λ-λ 0 τ dλ τ 2 . Let J 0 be a positive integer smaller than J the precise value of which will be given later. As an immediate consequence of (B.15) we get:

K(p 0 , π) =
E fGEWA -f 2 n ≤ J 0
j=1 Λ E f j λf j 2 n p 0 (dλ) + β j n K(p 0 , π)

+ J j=J 0 +1 Λ E f j λ -f j 2 n π(dλ).
Repeating the arguments of the proof of Proposition 5, one can check that

J 0 j=1 Λ E f j λ -f j 2 n p 0 (dλ) ≤ r λ 0 + 4τ R 0 + 1 n T J 0 +1 i=1 σ 2
i n 1/2 w 0 + log w 0 α 0 , K(p 0 , π) ≤ α 0 + 3 log 2 + w 0 τ .

One readily checks

T J 0 +1 i=1 σ 2 i ≤ Cσ 2 * T J 0 +1 i=1 i 2γ ≤ Cσ 2 * T 2γ+1 J 0 +1 ≤ Cσ 2 * n 2γ+1
. Furthermore, using the definition of weakly geometrically increasing groups, we get 1 2 ν n (1 + ρ n ) j ≤ T j+1 ≤ ν n (1 + ρ n ) j . This implies that

J 0 i=1 β 2 j ≤ Cσ 2 * J 0 i=1 T 2γ j+1 ≤ Cσ 2 * J 0 T 2γ J 0 +1 ≤ Cσ 2 * J 0 T 2γ J 0 .
Let J 0 be chosen such that T 2γ J 0 ≤ n (2γ+1/2)/(2α 0 +2γ+1) < T 2γ J 0 +1 . The condition log n = o(log ν n ) implies that J 0 T 2γ J 0 = o(n (2γ+1)/(2α 0 +2γ+1) ). Therefore, setting τ = α 0 n 2 +α 0 +2 log w 0 , we come up with J 0 j=1 Λ E f j λf j 2 n p 0 (dλ) + β j n K(p 0 , π) = o(n -2α 0 /(2α 0 +2γ+1) ),

as n → ∞. Since the minimax risk over F(α 0 , R 0 ), as well as r λ 0 , is on the order of n -2α 0 /(2α 0 +2γ+1) , we get

E fGEWA -f 2 n ≤ r λ 0 (1 + o(1)) + J j=J 0 +1 Λ E f j λ -f j 2 n π(dλ).
Using similar arguments, one checks the last sum is also o(n -2α 0 /(2α 0 +2γ+1) ) and the result follows.

  where b k are the singular values, {ψ k } is an orthonormal basis in Range(T ) ⊂ H and {φ k } is the corresponding orthonormal basis in H.

λ

  of fλ can be decomposed into the sum of unbiased risk estimates rj,unb λ

  dλ is absolutely continuous w.r.t. the uniform prior π and the Kullback-Leibler divergence between these two measures equals log Leb(Λ)/Leb B λ * (τ * ) . Using Leb B λ * (τ * ) ≥ (2τ * / √ M ) M and the Lipschitz condition, we get the desired inequality.

  γ n being a given normalization factor typically set to n or √ n, λ * > 0 and λ * ∈ [λ * , ∞]. One can easily check the Lipschitz property of the risk function with L r = L r (f ) = 4λ -1 * f 2 n + (2/n) Tr(Σ).
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 1 Fig 1. Test signals used in our experiments: Piece-Regular, Ramp, Piece-Polynomial, HeaviSine, Doppler and Blocks. (a) non-smooth (Experiment I) and (b) smooth (Experiment II).
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 123 For every π ∈ P Λ and for any β > 0, the estimator fEWA defined as the average of fλ w.r.t. to the probability measureπ(Y , dλ) = θ(Y , λ)π(dλ) with θ(Y , λ) ∝ expnr λ (Y )/β |Σ( fλ -fEWA ) n π(dλ)as unbiased estimator of the risk. If furthermore rλ ≥ runb λ , ∀λ ∈ Λ and Λ n∇ Y rλ |Σ( fλ -fEWA ) n π(dλ) ≥ -a Λ fλ -fEWA 2 n π(dλ) for some constant a > 0, then for every β ≥ 2a it holds thatE[ fEWAf 2 n ] ≤ inf p∈P Λ Λ E[r λ ] p(dλ) + βK(p,π) n . (A.1) Proof. According to the Stein lemma, the quantity rEWA = Y -fEWA estimate of the risk r n = E fEWAf 2 n . Using simple algebra, one checks that By interchanging the integral and differential operators, we get the following relation: ∂ y i fEWA,j = Λ ∂ y i fλ,j (Y ) θ(Y , λ) + fλ,j (Y ) ∂ y i θ(Y , λ) π(dλ). Then, combining this equality with Equations (A.2) and (A.3) implies that rEWA = Λ runb λ -fλ -fEWA 2 n π(dλ) + 2 n Λ Tr[Σ fλ ∇ Y θ(Y , λ) ⊤ ] π(dλ).

  fλ = A λ Y + b λ with symmetric A λ I n×n and b λ ∈ Ker(A λ ). Using the definition radj λ = runb λ + 1 n Y ⊤ (A λ -A 2 λ )Y , one easily checks that radj λ ≥ runb λ for every λ and that Λ n∇r adj λ |Σ( fλ -fEWA

  APPENDIX B: PROOFS OF PROPOSITIONS B.1. Proof of Proposition 2. Let us fix λ * ∈ Λ. It suffices to apply Theorem 3 and to upper-bound the right-hand side of inequality (2.8):

R 2 α

 2 p π (α, w) dαdw = 1, R 2 w p π (α, w) dαdw ≤ n 1/2 σ . (B.6)

n( 1 -( 1 - 2 9 )α-α 0 α 0 0 - 1 . 1 0 R 2 (

 11290112 (r α,wr α,w 0 ) = n k=1 k α /w) + -1 2 -(1k α /w 0 ) + -1 k α /w) + 2 -(1k α /w 0 ) + 2 σSince the weights of the Pinsker estimators are in [0, 1], we haven|r α,wr α,w 0 | ≤2 n k=1 (f 2 k + σ 2 ) |(1k α /w) + -(1k α /w 0 ) + | . (B.8) For any x, y ∈ R, |x +y + | ≤ |x -y| holds. Combined with α 0 ≤ α and w 0 ≤ w,By virtue of Inequalities (B.8) and (B.9) we get |r α,wr α,w 0 | ≤2n -1 to a bound for the other absolute difference between risk functions:|r α,w 0r α 0 ,w 0 | ≤ 2 n k α 0 ≤w 0 (f 2 k + σ 2 ) k αk α 0 w 0 ≤ 2(R 0 + σ 2 ) w (B.11)Recall that we aim to bound the second term in the right-hand side of (B.7). To this end, we need an accurate upper bound on the integrals of the right-hand sides of (B.10) and (B.11) w.r.t. the probability measure p 0 . For the first one, we get|r α,wr α,w 0 | p 0 (dλ) ≤ 2(R 0 + σ 2 )w -ww 0 )p 0 (dλ) + σ 2 ) . (B.12)Similar arguments apply to bound the integral of the second difference between risk functions: R 2|r α,w 0r α 0 ,w 0 |p 0 (dλ) ≤ 2(R 0 + σ 2 ) 0 + σ 2 ) log w 0 α 0τ log w 0 ≤ 4τ (R 0 + σ 2 )α -1 0 log w 0 , (B.13)

R 2 log 2 +log 1 +

 221 e -(α-α 0 )/τ p w (ww 0 )n σ,α /τ e -α p w wn σ,α p w (ww 0 )n σ,α /τ p w wn σ,α p 0 (dλ) -2 log(τ )≤ α 0 + (τ -1) +R wn σ,α 3 p 0 (dλ) -2 log(τ ).
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 215 log wn σ,α 3 p 0 (dλ) ≤ 3 R + log 1 + w 0 + u p w (u)du≤ 3 log 1 + w 0 + R + up w (u)du = 3 log(2 + w 0 ).Eventually, we can reformulate our bound on the risk of EWA given in (B.7), leading toE fEWAf 2 n ≤ r λ 0 + 4τ (R 0 + σ 2 ) proof of the proposition, we set τ = α 0 n 2 σ + α 0 + 2 log w 0 , w 0 = R 0 (α 0 + 1)(2α 0 + 1)According to Pinsker's theorem,max f ∈F (α 0 ,R 0 ) r λ 0 = (1 + o n (1)) min f max f ∈F (α 0 ,R 0 ) E ff 2 n .In view of this result, taking the max over f ∈ F(α 0 , R 0 ) in (B.14), we getmax f ∈F (α 0 ,R) E fEWAf 2 n ≤ (1 + o n (1)) min f max f ∈F (α 0 ,R) Proof ofProposition 6. It is clear that all the conditions required in Setting 1 are fulfilled and we can apply Theorem 3 that yields: E fGEWAf 2 n ≤ f j 2 n p j (dλ) + β j n K(p j , π) . (B.15)

  Assume that, for all λ ∈ Λ, A λ I n×n and A λ b λ = 0. If β ≥ 4|||Σ||| then, the aggregate fEWA defined by Eq. (2.2), (2.3) and the adjusted risk estimate rλ = radj

		the aggregate fEWA defined by Eq. (2.2), (2.3) and the unbiased risk
	estimate rλ = runb λ	(2.6) satisfies				
	E fEWA -f 2 n ≤ inf p∈P Λ	Λ	E fλ -f 2 n p(dλ) +	β n	K(p, π) .	(2.8)
	ii)					

λ (2.7) satisfies

Table 1

 1 Evaluation of 4 adaptive methods on 6 (non-smooth) signals. For each sample size and each method, we report the average value of n(MSE -MSE Oracle ) and the corresponding standard deviation (in parentheses), for 1000 replications of the experiment.

	)

  can be of valuable guidance.

	n	EWA	URE	BJS	ST	EWA	URE	BJS	ST
			Blocks			Doppler	
	256	0.387	0.216	0.216	2.278	0.214	0.237	1.608	2.777
		(0.43)	(0.40)	(0.24)	(0.98)	(0.23)	(0.40)	(0.73)	(1.04)
	512	0.170	0.209	0.650	3.193	0.165	0.250	1.200	3.682
		(0.20)	(0.41)	(0.25)	(1.07)	(0.20)	(0.44)	(0.48)	(1.24)
	1024	0.162	0.226	1.282	4.507	0.147	0.229	1.842	5.043
		(0.18)	(0.41)	(0.44)	(1.28)	(0.19)	(0.45)	(0.86)	(1.43)
	2048	0.120	0.220	1.574	6.107	0.138	0.229	1.864	6.584
		(0.17)	(0.37)	(0.55)	(1.55)	(0.20)	(0.40)	(1.07)	(1.58)
			HeaviSine			Piece-Regular	
	256	0.217	0.207	1.399	2.496	0.269	0.279	2.120	2.053
		(0.16)	(0.42)	(0.54)	(0.96)	(0.27)	(0.49)	(1.09)	(0.95)
	512	0.206	0.221	0.024	3.045	0.216	0.248	2.045	2.883
		(0.18)	(0.43)	(0.26)	(1.10)	(0.20)	(0.45)	(1.17)	(1.13)
	1024	0.179	0.200	0.113	3.905	0.183	0.228	1.251	3.780
		(0.18)	(0.50)	(0.27)	(1.27)	(0.20)	(0.41)	(0.70)	(1.37)
	2048	0.162	0.189	0.421	5.019	0.145	0.223	1.650	4.992
		(0.15)	(0.37)	(0.27)	(1.53)	(0.19)	(0.42)	(1.12)	(1.42)
			Ramp		Piece-Polynomial	
	256	0.162	0.200	0.339	2.770	0.215	0.257	1.486	2.649
		(0.16)	(0.38)	(0.24)	(1.00)	(0.25)	(0.48)	(0.68)	(1.01)
	512	0.150	0.215	0.425	3.658	0.170	0.243	1.865	3.683
		(0.18)	(0.38)	(0.23)	(1.20)	(0.20)	(0.46)	(0.84)	(1.20)
	1024	0.146	0.211	0.935	4.815	0.179	0.236	1.547	5.017
		(0.18)	(0.39)	(0.33)	(1.35)	(0.20)	(0.47)	(1.02)	(1.38)
	2048	0.141	0.221	1.316	6.432	0.165	0.210	2.246	6.628
		(0.20)	(0.43)	(0.42)	(1.54)	(0.20)	(0.39)	(1.15)	(1.70)

Table 2

 2 Evaluation of 4 adaptive methods on 6 smoothed signals. For each sample size and each method, we report the average value of n(MSE -MSE Oracle ) and the corresponding standard deviation (in parentheses), for 1000 replications of the experiment.

  is such that B λ * (τ * ) ⊂ Λ, the measure p * (λ) dλ is absolutely continuous w.r.t. the uniform prior π over Λ and the Kullback-Leibler divergence between these measures equals log Leb(Λ)/Leb B λ * (τ * ) . By the simple inequality x 2 2 ≤ M x 2 ∞ for any x ∈ R M , one can see that the Euclidean ball of radius τ * contains the hypercube of width 2τ * / √ M . So we have the following lower bound for the volumeB λ * : Leb B λ * (τ * ) ≥ (2τ * / √ M ) M. By combining this with inequality (B.1) the results of Proposition 2 is straightforward. B.2. Proof of Proposition 3. We start the proof as the one of the previous proposition, but pushing the development of the function λ → r λ up to second order. So, for any λ * ∈ R M , the risk of EWA E fEWAf 2 n is upper-bounded by r λ * + ) for any λ ∈ R, the second term in the last display vanishes since the distribution π is symmetric. The third term is computed thanks to the moment of order 2 of a scaled Student t(3) distribution. Recall that if ζ is drawn from the scaled Student t(3) distribution, its density function is u → 2/[π(1 + u 2 ) 2 ], and E[ζ 2 ] = 1. Thus, we have that Λ λ 2 1 π(λ)dλ = τ 2 . We can then bound the risk of EWA as follows:

	Now, since λ Λ	∇r ⊤ λ β n	K(p
		).	(B.1)

* * (λ-λ * ) + (λ-λ * ) ⊤ M(λ-λ * ) p * (dλ) + * , π).

By choosing p * (λ) = π(λλ *

The results of this section hold true not only for the discrete cosine transform, but for any linear transform D such that DD ⊤ = D ⊤ D = n -1 In×n.
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