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SHARP ORACLE INEQUALITIES FOR AGGREGATION OF AFFINE
ESTIMATORS

By Arnak S. Dalalyan and Joseph Salmon

ENSAE-CREST and Université Paris Diderot

We consider the problem of combining a (possibly uncountably
infinite) set of affine estimators in non-parametric regression model
with heteroscedastic Gaussian noise. Focusing on the exponentially
weighted aggregate, we prove a PAC-Bayesian type inequality that
leads to sharp oracle inequalities in discrete but also in continuous
settings. The framework is general enough to cover the combinations
of various procedures such as least square regression, kernel ridge
regression, shrinking estimators and many other estimators used in
the literature on statistical inverse problems. As a consequence, we
show that the proposed aggregate provides an adaptive estimator in
the exact minimax sense without neither discretizing the range of
tuning parameters nor splitting the set of observations. We also illus-
trate numerically the good performance achieved by the exponentially
weighted aggregate.

1. Introduction. There is a growing empirical evidence of superiority of aggregated sta-
tistical procedures, also referred to as blending, stacked generalization, or ensemble methods,
with respect to “pure” ones. Since their introduction in the 1990’s, famous aggregation pro-
cedures such as Boosting [29], Bagging [7] or Random Forest [2] have been successfully used
in practice for a large variety of applications. Moreover, most recent Machine Learning com-
petitions such as Pascal VOC or Netflix challenge have been won by procedures combining
different types of classifiers / predictors / estimators. It is therefore of central interest to un-
derstand from a theoretical point of view what kind of aggregation strategies should be used
for getting the best possible combination of the available statistical procedures.

1.1. Historical remarks and motivation. In the statistical literature, to the best of our
knowledge, theoretical foundations of aggregation procedures were first studied by Nemirovski
(Nemirovski [47], Juditsky and Nemirovski [36]) and independently by a series of papers by
Catoni (see [11] for an account) and Yang [61, 62, 63]. For the regression model, a significant
progress was achieved by Tsybakov [59] with introducing the notion of optimal rates of ag-
gregation and proposing aggregation-rate-optimal procedures for the tasks of linear, convex
and model selection aggregation. This point was further developed in [45, 51, 9], especially
in the context of high dimension with sparsity constraints and in [50] for Kullback-Leibler
aggregation.

From a practical point of view, an important limitation of the previously cited results on
aggregation is that they are valid under the assumption that the aggregated procedures are
deterministic (or random, but independent of the data used for aggregation). The generality
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of those results—almost no restriction on the constituent estimators—compensates to this
practical limitation.

In the Gaussian sequence model, a breakthrough was reached by Leung and Barron [44].
Building on very elegant but not very well known results by George [31], they established sharp
oracle inequalities for the exponentially weighted aggregate (EWA) for constituent estimators
obtained from the data vector by orthogonally projecting it on some linear subspaces. Dalalyan
and Tsybakov [19, 20] showed the result of [44] remains valid under more general (non-
Gaussian) noise distributions and when the constituent estimators are independent of the
data used for the aggregation. A natural question arises whether a similar result can be
proved for a larger family of constituent estimators containing projection estimators and
deterministic ones as specific examples. The main aim of the present paper is to answer this
question by considering families of affine estimators.

Our interest in affine estimators is motivated by several reasons. First, affine estimators
encompass many popular estimators such as smoothing splines, the Pinsker estimator [48, 28],
local polynomial estimators, non-local means [8, 55], etc. For instance, it is known that if the
underlying (unobserved) signal belongs to a Sobolev ball, then the (linear) Pinsker estimator
is asymptotically minimax up to the optimal constant, while the best projection estimator
is only rate-minimax. A second motivation is that—as proved by Juditsky and Nemirovski
[37]—the set of signals that are well estimated by linear estimators is very rich. It contains,
for instance, sampled smooth functions, sampled modulated smooth functions and sampled
harmonic functions. One can add to this set the family of piecewise constant functions as
well, as demonstrated in [49], with natural application in magnetic resonance imaging. It is
worth noting that oracle inequalities for penalized empirical risk minimizer were also proved
by Golubev [35], and for model selection by Arlot and Bach [3], Baraud, Giraud and Huet [5].

In the present work, we establish sharp oracle inequalities in the model of heteroscedas-
tic regression, under various conditions on the constituent estimators assumed to be affine
functions of the data. Our results provide theoretical guarantees of optimality, in terms of
expected loss, for the exponentially weighted aggregate. They have the advantage of cover-
ing in a unified fashion the particular cases of frozen estimators considered by Dalalyan and
Tsybakov [20] and of projection estimators treated by Leung and Barron [44].

We focus on the theoretical guarantees expressed in terms of oracle inequalities for the
expected squared loss. Interestingly, although several recent papers [3, 5, 34] discuss the
paradigm of competing against the best linear procedure from a given family, none of them
provide oracle inequalities with leading constant equal to one. Furthermore, most existing
results involve some constants depending on different parameters of the setup. In contrast,
the oracle inequality that we prove herein is with leading constant one and admits a simple
formulation. It is established for (suitably symmetrized, if necessary) exponentially weighted
aggregates [31, 11, 21] with an arbitrary prior and a temperature parameter which is not
too small. The result is non-asymptotic but leads to asymptotically optimal residual term
when the sample size, as well as the cardinality of the family of constituent estimators, tends
to infinity. In its general form, the residual term is similar to those obtained in PAC-Bayes
setting [46, 41, 56] in that it is proportional to the Kullback-Leibler divergence between two
probability distributions.

The problem of competing against the best procedure in a given family was extensively
studied in the context of online learning and prediction with expert advice [38, 16]. A connec-
tion between the results on online learning and statistical oracle inequalities was established
by Gerchinovitz [32].
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1.2. Notation and examples of linear estimators. Throughout this work, we focus on the
heteroscedastic regression model with Gaussian additive noise. We assume we are given a
vector Y = (y1, · · · , yn)⊤ ∈ R

n obeying the model:

yi = fi + ξi, for i = 1, . . . , n, (1.1)

where ξ = (ξ1, . . . , ξn)
⊤ is a centered Gaussian random vector, fi = f(xi) where f : X → R

is an unknown function and x1, . . . , xn ∈ X are deterministic points. Here, no assumption is
made on the set X . Our objective is to recover the vector f = (f1, . . . , fn)

⊤, often referred to
as signal, based on the data y1, . . . , yn. In our work, the noise covariance matrix Σ = E[ξξ⊤] is
assumed to be finite with a known upper bound on its spectral norm |||Σ|||. We denote by 〈·|·〉n
the empirical inner product in R

n: 〈u|v〉n = (1/n)
∑n

i=1 uivi. We measure the performance of
an estimator f̂ by its expected empirical quadratic loss: r = E

[
‖f − f̂‖2n

]
where ‖f − f̂‖2n =

1
n

∑n
i=1(fi − f̂i)

2.

We only focus on the task of aggregating affine estimators f̂λ indexed by some parameter
λ ∈ Λ. These estimators can be written as affine transforms of the data Y = (y1, . . . , yn)

⊤ ∈
R
n. Using the convention that all vectors are one-column matrices, we have f̂λ = AλY + bλ,

where the n×n real matrix Aλ and the vector bλ ∈ R
n are deterministic. It means the entries

of Aλ and bλ may depend on the points x1, . . . , xn but not on the data Y . Let us describe now
different families of linear and affine estimators successfully used in the statistical literature.
Our results apply to all these families, leading to a procedure that behaves nearly as well as
the best (unknown) one of the family.

Ordinary least squares. Let {Sλ : λ ∈ Λ} be a set of linear subspaces of Rn. A well known
family of affine estimators, successfully used in the context of model selection [6], is the set of
orthogonal projections onto Sλ. In the case of a family of linear regression models with design
matrices Xλ, one has Aλ = Xλ(X

⊤
λ Xλ)

+X⊤
λ , where (X⊤

λ Xλ)
+ stands for the Moore-Penrose

pseudo-inverse of X⊤
λ Xλ.

Diagonal filters. Other common estimators are the so called diagonal filters corresponding
to diagonal matrices A = diag(a1, . . . , an). Examples include:

• Ordered projections: ak = 1l(k≤λ) for some integer λ (1l(·) is the indicator function). Those
weights are also called truncated SVD (Singular Value Decomposition) or spectral cut-
off. In this case a natural parametrization is Λ = {1, . . . , n}, indexing the number of
elements conserved.

• Block projections: ak = 1l(k≤w1)+
∑m−1

j=1 λj1l(wj≤k≤wj+1), k = 1, . . . , n, where λj ∈ {0, 1}.
Here the natural parametrization is Λ = {0, 1}m−1, indexing subsets of {1, . . . ,m− 1}.

• Tikhonov-Philipps filter: ak = 1
1+(k/w)α , where w,α > 0. In this case, Λ = (R∗

+)
2, in-

dexing continuously the smoothing parameters.

• Pinsker filter: ak =
(
1− kα

w

)
+
, where x+ = max(x, 0) and (w,α) = λ ∈ Λ = (R∗

+)
2.

Kernel ridge regression. Assume that we have a positive definite kernel k : X × X → R

and we aim at estimating the true function f in the associated reproducing kernel Hilbert
space (Hk, ‖ · ‖k). The kernel ridge estimator is obtained by minimizing the criterion ‖Y −
f‖2n + λ‖f‖2k w.r.t. f ∈ Hk (see [57, p. 118]). Denoting by K the n × n kernel-matrix with

element Ki,j = k(xi, xj), the unique solution f̂ is a linear estimate of the data, f̂ = AλY ,
with Aλ = K(K + nλIn×n)

−1, where In×n is the n× n identity matrix.
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Multiple Kernel learning. As described in [3], it is possible to handle the case of several
kernels k1, . . . , kM , with associated positive definite matrices K1, . . . ,KM . For a parameter
λ = (λ1, . . . , λM ) ∈ Λ = R

M
+ , one can define the estimators f̂λ = AλY with

Aλ =
( M∑

m=1

λmKm

)( M∑

m=1

λmKm + nIn×n

)−1
. (1.2)

It is worth mentioning that the formulation in Eq.(1.2) can be linked to the group Lasso [64]
and to the multiple kernel learning introduced in [40]—see [3] for more details.

Moving averages. If we think of coordinates of f as some values assigned to the vertices of an
undirected graph, satisfying the property that two nodes are connected if the corresponding
values of f are close, then it is natural to estimate fi by averaging out the values Yj for indices
j that are connected to i. The resulting estimator is a linear one with a matrix A = (aij)

n
i,j=1

such that aij = 1lVi
(j)/ni, where Vi is the set of neighbors of the node i in the graph and ni

is the cardinality of Vi.

1.3. Organization of the paper. In Section 2, we introduce EWA and state a PAC-Bayes
type bound in expectation assessing optimality properties of EWA in combining affine estima-
tors. The strengths and limitations of the results are discussed in Section 3. The extension of
these results to the case of grouped aggregation—in relation with ill-posed inverse problems—
is developed in Section 4. As a consequence, we provide in Section 5 sharp oracle inequalities
in various set-ups: ranging from finite to continuous families of constituent estimators and
including sparse scenarii. In Section 6, we apply our main results to prove that combin-
ing Pinsker’s type filters with EWA leads to asymptotically sharp adaptive procedures over
Sobolev ellipsoids. Section 7 is devoted to numerical comparison of EWA with other classical
filters (soft thresholding, blockwise shrinking, etc.), and illustrates the potential benefits of
aggregating. Conclusion is given in Section 8, while technical proofs are postponed to the
Appendix.

2. Aggregation of estimators: main results. In this section, we describe the sta-
tistical framework for aggregating estimators and we introduce the exponentially weighted
aggregate. The task of aggregation consists in estimating f by a suitable combination of the
elements of a family of constituent estimators FΛ = (f̂λ)λ∈Λ ∈ R

n. The target objective of
the aggregation is to build an aggregate f̂aggr that mimics the performance of the best con-
stituent estimator, called oracle (because of its dependence on the unknown function f). In
what follows, we assume that Λ is a measurable subset of RM , for some M ∈ N.

The theoretical tool commonly used for evaluating the quality of an aggregation procedure
is the oracle inequality (OI), generally written:

E
[
‖f̂aggr − f‖2n

]
≤ Cn inf

λ∈Λ
E
[
‖f̂λ − f‖2n

]
+Rn, (2.1)

with residual term Rn tending to zero as n → ∞, and leading constant Cn being bounded.
The OIs with leading constant one are of central theoretical interest since they allow to bound
the excess risk and to assess the aggregation-rate-optimality. They are often referred to as
sharp OI.
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2.1. Exponentially Weighted Aggregate (EWA). Let rλ = E
[
‖f̂λ − f‖2n

]
denote the risk

of the estimator f̂λ, for any λ ∈ Λ, and let r̂λ be an estimator of rλ. The precise form of r̂λ
strongly depends on the nature of the constituent estimators. For any probability distribution
π over Λ and for any β > 0, we define the probability measure of exponential weights, π̂, by

π̂(dλ) = θ(λ)π(dλ) with θ(λ) =
exp(−nr̂λ/β)∫

Λ exp(−nr̂ω/β)π(dω)
. (2.2)

The corresponding exponentially weighted aggregate, henceforth denoted by f̂
EWA

, is the
expectation of f̂λ w.r.t. the probability measure π̂:

f̂
EWA

=

∫

Λ
f̂λ π̂(dλ) . (2.3)

We will frequently use the terminology of Bayesian statistics: the measure π is called prior,
the measure π̂ is called posterior and the aggregate f̂

EWA
is then the posterior mean. The

parameter β will be referred to as the temperature parameter. In the framework of aggregating
statistical procedures, the use of such an aggregate can be traced back to George [31].

The interpretation of the weights θ(λ) is simple: they up-weight estimators all the more
that their performance, measured in terms of the risk estimate r̂λ, is good. The temperature
parameter reflects the confidence we have in this criterion: if the temperature is small (β ≈ 0)
the distribution concentrates on the estimators achieving the smallest value for r̂λ, assigning
almost zero weights to the other estimators. On the other hand, if β → +∞ then the proba-
bility distribution over Λ is simply the prior π, and the data do not influence our confidence
in the estimators.

2.2. Main results. In this paper, we only focus on affine estimators

f̂λ = AλY + bλ, (2.4)

where the n × n real matrix Aλ and the vector bλ ∈ R
n are deterministic. Furthermore, we

will assume that an unbiased estimator Σ̂ of the noise covariance matrix Σ is available. It is
well-known (cf., Appendix A for details) that the risk of the estimator (2.4) is given by

rλ = E[‖f̂λ − f‖2n] = ‖(Aλ − In×n)f + bλ‖2n +
Tr(AλΣAλ

⊤)

n
(2.5)

and that r̂unbλ , defined by

r̂unbλ =
∥∥Y − f̂λ

∥∥2
n
+

2

n
Tr(Σ̂Aλ)−

1

n
Tr[Σ̂] (2.6)

is an unbiased estimator of rλ. Along with r̂unbλ we will use another estimator of the risk that
we call adjusted risk estimate and define by:

r̂adjλ =
∥∥Y − f̂λ

∥∥2
n
+

2

n
Tr(Σ̂Aλ)−

1

n
Tr[Σ̂]

︸ ︷︷ ︸
r̂unb
λ

+
1

n
Y ⊤(Aλ −A2

λ)Y . (2.7)

One can notice that the adjusted risk estimate r̂adjλ coincides with the unbiased risk estimate
r̂unbλ if and only if the matrix Aλ is an orthogonal projector.
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To state our main results, we denote by PΛ the set of all probability measures on Λ and
by K(p, p′) the Kullback-Leibler divergence between two probability measures p, p′ ∈ PΛ:

K(p, p′) =

{∫
Λ log

( dp
dp′ (λ)

)
p(dλ) if p is absolutely continuous w.r.t. p′,

+∞ otherwise.

We write S1 � S2 (resp. S1 � S2) for two symmetric matrices S1 and S2, when S2−S1 (resp.
S1 − S2) is semi-definite positive.

Theorem 1. Let all the matrices Aλ be symmetric and Σ̂ be unbiased and independent
of Y .

i) Assume that for all λ, λ′ ∈ Λ, it holds that AλAλ′ = Aλ′Aλ, AλΣ+ΣAλ � 0 and bλ = 0.
If β ≥ 8|||Σ||| then, the aggregate f̂

EWA
defined by Eq. (2.2), (2.3) and the unbiased risk

estimate r̂λ = r̂unbλ (2.6) satisfies

E
[
‖f̂

EWA
− f‖2n

]
≤ inf

p∈PΛ

{∫

Λ
E
[
‖f̂λ − f‖2n

]
p(dλ) +

β

n
K(p, π)

}
. (2.8)

ii) Assume that, for all λ ∈ Λ, Aλ � In×n and Aλbλ = 0. If β ≥ 4|||Σ||| then, the aggregate

f̂
EWA

defined by Eq. (2.2), (2.3) and the adjusted risk estimate r̂λ = r̂adjλ (2.7) satisfies

E
[
‖f̂

EWA
− f‖2n

]
≤ inf

p∈PΛ

{∫

Λ
E
[
‖f̂λ − f‖2n

]
p(dλ) +

β

n
K(p, π)

+
1

n

∫

Λ

(
f⊤(Aλ −A2

λ)f +Tr
[
Σ(Aλ −A2

λ)
])
p(dλ)

}
.

The simplest setting in which all the conditions of part i) of Theorem 1 are fulfilled is when
the matrices Aλ and Σ are all diagonal, or diagonalizable in a common base. This result, as
we will see in Section 6, leads to a new estimator which is adaptive, in the exact minimax
sense, over the collection of all Sobolev ellipsoids. It also suggests a new method for efficiently
combining varying-block-shrinkage estimators, as described in Section 5.4.

However, part i) of Theorem 1 leaves open the issue of aggregating affine estimators defined
via non-commuting matrices. In particular, it does not allow us to evaluate the MSE of EWA
when each Aλ is a convex or linear combination of a fixed family of projection matrices on
non-orthogonal linear subspaces. Such kind of situations may be handled via the result of
part ii) of Theorem 1. One can observe that in the particular case of a finite collection of
projection estimators (i.e., Aλ = A2

λ and bλ = 0 for every λ), the result of part ii) offers an
extension of [44, Corollary 6] to the case of general noise covariances ([44] deals only with
i.i.d. noise).

An important situation covered by part ii) of Theorem 1, but not by part i), concerns the
case when signals of interest f are smooth or sparse in a basis Bsig which is different from the
basis Bnoise orthogonalizing the covariance matrix Σ. In such a context, one may be interested
in considering matrices Aλ that are diagonalizable in the basis Bsig which, in general, do not
commute with Σ.

Remark 1. While the results in [44] yield a sharp oracle inequality in the case of projec-
tion matrices Aλ, they are of no help in the case when the matrices Aλ are nearly idempotent
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and not exactly. Assertion ii) of Theorem 1 fills this gap by showing that if maxλTr[Aλ−A2
λ] ≤

δ then E
[
‖f̂

EWA
− f‖2n

]
is bounded by

inf
p∈PΛ

{∫

Λ
E
[
‖f̂λ − f‖2n

]
p(dλ) +

β

n
K(p, π)

}
+ δ

(
‖f‖2n + n−1|||Σ|||

)
.

Remark 2. We have focused only on Gaussian errors to emphasize that it is possible
to efficiently aggregate almost any family of affine estimators. We believe that by a suitable
adaptation of the approach developed in [20], claims of Theorem 1 can be generalized—at least
when ξi are independent with known variances—to some other common noise distributions.

The results presented so far concern the situation when the matrices Aλ are symmetric.
However, using the last part of Theorem 1, it is possible to propose an estimator of f that
is almost as accurate as the best affine estimator AλY + bλ even if the matrices Aλ are not
symmetric. Interestingly, the estimator enjoying this property is not obtained by aggregating
the original estimators f̂λ = AλY + bλ but the “symmetrized” estimators f̃λ = ÃλY + bλ,
where Ãλ = Aλ + Aλ

⊤ − Aλ
⊤Aλ. Besides symmetry, an advantage of the matrices Ãλ, as

compared to the Aλ’s, is that they automatically satisfy the contraction condition Ãλ � In×n

required by part ii) of Theorem 1. We will refer to this method as Symmetrized Exponentially
Weighted Aggregates (or SEWA) [18].

Theorem 2. Assume that the matrices Aλ and the vectors bλ satisfy Aλbλ = Aλ
⊤bλ = 0

for every λ ∈ Λ. Assume in addition that Σ̂ is an unbiased estimator of Σ and is independent
of Y . Let f̃SEWA denote the exponentially weighted aggregate of the (symmetrized) estimators
f̃λ = (Aλ+Aλ

⊤−Aλ
⊤Aλ)Y +bλ with the weights (2.2) defined via the risk estimate r̂unbλ . Then,

under the conditions β ≥ 4|||Σ||| and

π
{
λ ∈ Λ : Tr(Σ̂Aλ) ≤ Tr(Σ̂Aλ

⊤Aλ)
}
= 1 a.s. (C)

it holds that

E
[
‖f̃

SEWA
− f‖2n

]
≤ inf

p∈PΛ

{∫

Λ
E
[
‖f̂λ − f‖2n

]
p(dλ) +

β

n
K(p, π)

}
. (2.9)

To understand the scope of condition (C), let us present several cases of widely used linear
estimators for which this condition is satisfied.

• The simplest class of matrices Aλ for which condition (C) holds true are orthogonal
projections. Indeed, if Aλ is a projection matrix, it satisfies Aλ

⊤Aλ = Aλ and, therefore,
Tr(Σ̂Aλ) = Tr(Σ̂Aλ

⊤Aλ).
• When the matrix Σ̂ is diagonal, then a sufficient condition for (C) is aii ≤

∑n
j=1 a

2
ji.

Consequently, (C) holds true for matrices having only zeros on the main diagonal. For
instance, the kNN filter in which the weight of the observation Yi is replaced by zero,
i.e., aij = 1j∈{ji,1,...,ji,k}/k satisfies this condition.

• Under a little bit more stringent assumption of homoscedasticity, i.e., when Σ̂ = σ̂2In×n,
if the matrices Aλ are such that all the non-zero elements of each row are equal and sum
up to one (or a quantity larger than one) then Tr(Aλ) = Tr(Aλ

⊤Aλ) and (C) is fulfilled.
A notable example of linear estimators that satisfy this condition are Nadaraya-Watson
estimators with rectangular kernel and nearest neighbor filters.
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3. Discussion. Before elaborating on the main results stated in the previous section, by
extending them to inverse problems and by deriving adaptive procedures, let us discuss some
aspects of the presented OIs.

3.1. Assumptions on Σ. In some rare situations, the matrix Σ is known and it is natural
to use Σ̂ = Σ as unbiased estimator. Besides this not very realistic situation, there are at least
two contexts in which it is reasonable to assume that an unbiased estimator of Σ, independent
of Y , is available.

The first case corresponds to problems in which a signal can be recorded several times
by the same device, or once but by several identical devices. For instance, this is the case
when an object is photographed many times by the same digital camera during a short time
period. Let Z1, . . . ,ZN be the available signals, which can be considered as i.i.d. copies of
an n-dimensional Gaussian vector with mean f and covariance matrix ΣZ . Then, defining
Y = (Z1 + . . . + ZN )/N and Σ̂Z = (N − 1)−1(Z1Z

⊤
1 + . . . + ZNZ⊤

N − NY Y ⊤), we find
ourselves within the framework covered by previous theorems. Indeed, Y ∼ Nn(f ,ΣY ) with
ΣY = ΣZ/N and Σ̂Y = Σ̂Z/N is an unbiased estimate of ΣY , independent of Y . Note that
our theory applies in this setting for every integer N ≥ 2.

The second case is when the dominating part of the noise comes from the device which is
used for recording the signal. In this case, the practitioner can use the device in order to record
a known signal, g. In digital image processing, g can be a black picture. This will provide a
noisy signal Z drawn from Gaussian distribution Nn(g,Σ), independent of Y which is the
signal of interest. Setting Σ̂ = (Z − g)(Z − g)⊤, one ends up with an unbiased estimator of
Σ, which is independent of Y .

3.2. OI in expectation versus OI with high probability. All the results stated in this work
provide sharp non-asymptotic bounds on the expected risk of EWA. It would be insightful
to complement this study by risk bounds that hold true with high probability. There is a
common opinion in the statistical and machine learning community that such kind of results,
especially popular in machine learning, do not hold for EWA and its variations. However, the
negative results proved in Audibert [4] (see also [42, Thm. A]), and underlying this opinion
are very frequently over-interpreted. In fact, [4] only proved that there is no fixed value of
temperature parameter β for which the averaged version of EWA satisfies sharp OIs with
high probability uniformly over the set of all possible probability distributions. So it may
very well happen that an OI with high probability holds true for EWA with a temperature
parameter depending on the distribution of the data. In addition, all the existing theoretical
results, even those bounding the expected risk, advocate for selecting the temperature as a
function of the data distribution. This is also the case for our results, since β is required to
be larger than a multiple of the spectral norm of the noise covariance matrix. So, there is no
reason to bury EWA; we believe that it is possible to get sharp OIs with high probability in
the context of the present work and are now working in this direction.

There are at least two other reasons which make us believe that optimal OIs with high
probability are possible to obtain for EWA. First, Lecué and Mendelson [42, Thm. C] proved
this type of results in the model of regression with random design, under some strong assump-
tions involving both constituent estimators and the loss function. Second, several empirical
studies (see, for instance, [17]) demonstrated that EWA has a smaller risk than some of its
competitors, such as the empirical star procedure [4], which are provably optimal in the sense
of OIs with high probability. The extensive numerical study conducted in the present paper,
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as well as those of Rigollet and Tsybakov [53] on particular applications of EWA, explains
our optimism concerning provability of OIs in probability for EWA.

3.3. Relation to previous work and limits of our results. The OI of the previous section
require various conditions on the constituent estimators f̂λ = AλY + bλ. One may wonder
how general these conditions are and is it possible to extend these OIs to more general f̂λ’s.
Although this work does not answer this question, we can sketch some elements of response.

First of all, we stress that the conditions of the present paper relax significantly those
of previous results existing in statistical literature. For instance, Kneip [39] considered only
linear estimators, i.e., bλ ≡ 0 and, more importantly, only ordered set of commuting matrices
Aλ. The ordering assumption is dropped in Leung and Barron [44], in the case of projection
matrices. Note that neither of these assumptions is satisfied for the families of Pinsker and
Tikhonov-Philipps estimators. The present work strengthens existing results in considering
more general, affine estimators extending both projection matrices and ordered commuting
matrices.

Despite the advances achieved in this work, there are still interesting cases that are not
covered by our theory. We now introduce a family of estimators commonly used in image
processing, that do not satisfy our assumptions. In recent years, non-local means (NLM)
became quite popular in image processing [8]. This method of signal denoising, shown to be
tied in with EWA [55], removes noise by exploiting signals self-similarities. We briefly define
the NLM procedure in the case of one-dimensional signals.

Assume that a vector Y = (y1, . . . , yn)
⊤ given by (1.1) is observed with fi = f(i/n), i =

1, . . . , n, for some function f : [0, 1] → R. For a fixed “patch-size” k ∈ {1, . . . , n}, let us define
f [i] = (fi, fi+1, . . . , fi+k−1)

⊤ and Y [i] = (yi, yi+1, . . . , yi+k−1)
⊤ for every i = 1, . . . , n − k + 1.

The vectors f [i] and Y [i] are respectively called true patch and noisy patch. The NLM consists
in regarding the noisy patches Y [i] as constituent estimators for estimating the true patch
f [i0] by applying EWA. One easily checks that the constituent estimators Y [i] are affine in
Y [i0], that is Y [i] = AiY [i0] + bi with Ai and bi independent of Y [i0]. Indeed, if the distance
between i and i0 is larger than k, then Y [i] is independent of Y [i0] and, therefore, Ai = 0 and
bi = Y [i]. If |i − i0| < k, then the matrix Ai is a suitably chosen shift matrix and bi is the
projection of Y [i] onto the orthogonal complement of the image of Ai. Unfortunately, these

matrices {Ai} and vectors {bi} do not fit our framework, i.e., the assumption Aibi = A⊤
i bi = 0

is not satisfied.
Finally, our proof technique is specific to affine estimators. Its extension to estimators

defined as a more complex function of the data will certainly require additional tools and is a
challenging problem for future research. Yet, it seems unlikely to get sharp OIs with optimal
remainder term for a fairly general family of constituent estimators (without data-splitting),
since this generality inherently increases the risk of overfitting.

4. Ill-posed inverse problems and group-weighting. As explained in [15, 12], the
model of heteroscedastic regression is well suited for describing inverse problems. In fact, let
T be a known linear operator on some Hilbert space H, with inner product 〈·|·〉H. For some
h ∈ H, let Y be the random process indexed by g ∈ H such that

Y = Th+ εξ ⇐⇒
(
Y (g) = 〈Th|g〉H + εξ(g), ∀g ∈ H

)
, (4.1)

where ε > 0 is the noise magnitude and ξ is a white Gaussian noise on H, i.e., for any
g1, . . . , gk ∈ H the vector

(
Y (g1), . . . , Y (gk)

)
is Gaussian with zero mean and covariance
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matrix {〈gi|gj〉H}. The problem is then the following: estimate the element h assuming the
value of Y can be measured for any given g. It is customary to use as g, the eigenvectors
of the adjoint T ∗ of T . Under the condition that the operator T ∗ T is compact, the SVD
yields Tφk = bkψk and T ∗ψk = bkφk, for k ∈ N, where bk are the singular values, {ψk} is an
orthonormal basis in Range(T ) ⊂ H and {φk} is the corresponding orthonormal basis in H.
In view of (4.1), it holds that:

Y (ψk) = 〈h|φk〉H bk + εξ(ψk), k ∈ N. (4.2)

Since in practice only a finite number of measurements can be computed, it is natural to
assume that the values Y (ψk) are available only for k smaller than some integer n. Under
the assumption that bk 6= 0 the last equation is equivalent to (1.1) with fi = 〈h|φi〉H and
Σ = diag(σ2i , i = 1, 2, . . .) for σi = εb−1

i . Examples of inverse problems to which this statistical
model has been successfully applied are derivative estimation, deconvolution with known
kernel, computerized tomography—see [12] and the references therein for more applications.

For very mildly ill-posed inverse problems, i.e., when the singular values bk of T tend to
zero not faster than any negative power of k, the approach presented in Section 2 will lead
to satisfactory results. Indeed, by choosing β = 8|||Σ||| or β = 4|||Σ|||, the remainder term in
(2.8) and (2.9) becomes—up to a logarithmic factor—proportional to max1≤k≤n b

−2
k /n, which

is the optimal rate in the case of very mild ill-posedness.
However, even for mildly ill-posed inverse problems, the approach developed in previous

section becomes obsolete since the remainder blows up when n increases to infinity. Further-
more, this is not an artifact of our theoretical results, but rather a drawback of the aggregation
strategy adopted in the previous section. Indeed, the posterior probability measure π̂ defined
by (2.2) can be seen as the solution of the entropy-penalized empirical risk minimization
problem:

π̂n = arg inf
p

{∫

Λ
r̂λ p(dλ) +

β

n
K(p, π)

}
, (4.3)

where the inf is taken over the set of all probability distributions. It means the same regular-
ization parameter β is employed for estimating both the coefficients fi = 〈h|φi〉H corrupted
by noise of small magnitude and those corrupted by large noise. Since we place ourselves in
the setting of known operator T and, therefore, known noise levels, such a uniform treatment
of all coefficients is unreasonable. It is more natural to upweight the regularization term in
the case of large noise downweighting the data fidelity term and, conversely, to downweight
the regularization in the case of small noise. This motivates our interest in the grouped EWA
(or GEWA).

Let us consider a partition B1, . . . , BJ of the set {1, . . . , n}: Bj = {Tj + 1, . . . , Tj+1},
for some integers 0 = T1 < T2 < . . . < TJ+1 = n. To each element Bj of this partition,
we associate the data sub-vector Y j = (Yi : i ∈ Bj) and the sub-vector of true function
f j = (fi : i ∈ Bj). As in previous sections, we are concerned by the aggregation of affine
estimators f̂λ = AλY + bλ but here we will assume the matrices Aλ are block-diagonal:

Aλ =




A1
λ 0 . . . 0
0 A2

λ . . . 0
...

...
. . .

...
0 0 . . . AJ

λ


 , with Aj

λ ∈ R
(Tj+1−Tj)×(Tj+1−Tj).
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Similarly, we define f̂
j
λ and b

j
λ as the sub-vectors of f̂λ and bλ, respectively, corresponding

to the indices belonging to Bj. We will also assume that the noise covariance matrix Σ and

its unbiased estimate Σ̂ are block-diagonal with (Tj+1 − Tj)× (Tj+1 − Tj) blocks Σ
j and Σ̂j,

respectively. These notations imply in particular that f̂
j
λ = Aj

λY
j + b

j
λ for every j = 1, . . . , J .

Moreover, the unbiased risk estimate r̂unbλ of f̂λ can be decomposed into the sum of unbiased

risk estimates r̂j,unbλ of f̂
j
λ; namely r̂unbλ =

∑J
j=1 r̂

j,unb
λ , where

r̂j,unbλ = ‖Y j − f̂
j
λ‖+

2

n
Tr(Σ̂jAj

λ)−
1

n
Tr[Σ̂j], j = 1, . . . , J.

To state the analogues of Theorems 1 and 2 we introduce the following settings.

Setting 1: For all λ, λ′ ∈ Λ and j ∈ {1, . . . , J}, Aj
λ are symmetric and satisfy Aj

λA
j
λ′ =

Aj
λ′A

j
λ, A

j
λΣ

j +ΣjAj
λ � 0 and b

j
λ = 0. For a temperature vector β = (β1, . . . , βJ )

⊤ and

a prior π, we define GEWA as f̂
j
GEWA

=
∫
Λ f̂

j
λπ̂

j(dλ), where π̂j(dλ) = θj(λ)π(dλ) with

θj(λ) =
exp(−nr̂j,unbλ /βj)∫

Λ exp(−nr̂j,unbω /βj)π(dω)
. (4.4)

Setting 2: For every j = 1, . . . , J and for every λ belonging to a set of π-measure one, the
matrices Aλ satisfy a.s. the inequality Tr(Σ̂jAj

λ) ≤ Tr(Σ̂j(Aj
λ)
⊤Aj

λ) while the vectors

bλ are such that Aj
λb

j
λ = (Aj

λ)
⊤b

j
λ = 0. In this case, for a temperature vector β =

(β1, . . . , βJ )
⊤ and a prior π, we define GEWA as f̂

j
GEWA

=
∫
Λ f̃λ

j
π̂j(dλ), where f̃λ

j
=

(Aj
λ +(Aj

λ)
⊤− (Aj

λ)
⊤Aj

λ)Y
j + b

j
λ and π̂j is defined by (4.4). Note that this setting is the

grouped version of the SEWA.

Theorem 3. Assume that Σ̂ is unbiased and independent of Y . Under Setting 1, if βj ≥
8|||Σj||| for all j = 1, . . . , J , then

E
[
‖f̂

GEWA
− f‖2n

]
≤

J∑

j=1

inf
pj

{∫

Λ
E‖f̂ j

λ − f j‖2n pj(dλ) +
βj
n

K(pj , π)

}
. (4.5)

Under Setting 2, this inequality holds true if βj ≥ 4|||Σj ||| for every j = 1, . . . , J .

As we shall see in Section 6, this theorem allows us to propose an estimator of the unknown
signal which is adaptive w.r.t. the smoothness properties of the underlying signal and achieves
the minimax rates and constants over the Sobolev ellipsoids provided that the operator T is
mildly ill-posed, i.e., its singular values decrease at most polynomially.

5. Examples of sharp oracle inequalities. In this section, we discuss consequences of
the main result for specific choices of prior measures. For conveying the main messages of this
section it is enough to focus on the Settings 1 and 2 in the case of only one group (J = 1).

5.1. Discrete oracle inequality. In order to demonstrate that Inequality (4.5) can be re-
formulated in terms of an OI as defined by (2.1), let us consider the case when the prior π
is discrete, that is, π(Λ0) = 1 for a countable set Λ0 ⊂ Λ, and w.l.o.g Λ0 = N. Then, the
following result holds true.
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Proposition 1. Let Σ̂ be unbiased, independent of Y and π be supported by N. Under
Setting 1 with J = 1 and β = β1 ≥ 8|||Σ||| the aggregate f̂

GEWA
satisfies the inequality

E
[
‖f̂

GEWA
− f‖2n

]
≤ inf

ℓ∈N:πℓ>0

(
E
[
‖f̂ℓ − f‖2n

]
+
β log(1/πℓ)

n

)
. (5.1)

Furthermore, (5.1) holds true under Setting 2 for β ≥ 4|||Σ|||.

Proof. It suffices to apply Thm. 3 and to upper-bound the right-hand side by the mini-
mum over all Dirac measures p = δℓ such that πℓ > 0.

This inequality can be compared to Corollary 2 in [5, Section 4.3]. Our result has the
advantage of having factor one in front of the expectation of the left-hand side, while in [5] a
constant much larger than 1 appears. However, it should be noted that the assumptions on
the (estimated) noise covariance matrix are much weaker in [5].

5.2. Continuous oracle inequality. It may be useful in practice to combine a family of affine
estimators indexed by an open subset of RM for some M ∈ N (e.g., , to build an estimator
nearly as accurate as the best kernel estimator with fixed kernel and varying bandwidth). To
state an oracle inequality in such a “continuous” setup, let us denote by d2(λ, ∂Λ) the largest
real τ > 0 such that the ball centered at λ of radius τ—hereafter denoted by Bλ(τ)—is
included in Λ. Let Leb(·) be the Lebesgue measure in R

M .

Proposition 2. Let Σ̂ be unbiased, independent of Y . Let Λ ⊂ R
M be an open and

bounded set and let π be the uniform distribution on Λ. Assume that the mapping λ 7→ rλ is
Lipschitz continuous, i.e., |rλ′ − rλ| ≤ Lr‖λ′ − λ‖2, ∀λ,λ′ ∈ Λ. Under Setting 1 with J = 1
and β = β1 ≥ 8|||Σ||| the aggregate f̂GEWA satisfies the inequality

E‖f̂GEWA − f‖2n ≤ inf
λ∈Λ

{
E
[
‖f̂λ − f‖2n

]
+
βM

n
log

( √
M

2min(n−1, d2(λ, ∂Λ))

)}

+
Lr + β log

(
Leb(Λ)

)

n
. (5.2)

Furthermore, (5.2) holds true under Setting 2 for every β ≥ 4|||Σ|||.

Proof. It suffices to apply assertion i) of Theorem 1 and to upper-bound the right-
hand side in Ineq. (2.8) by the minimum over all measures having as density pλ∗,τ∗(λ) =
1lBλ∗(τ∗)(λ)/Leb(Bλ∗(τ∗)). Choosing τ∗ = min(n−1, d2(λ

∗, ∂Λ)) such that Bλ∗(τ∗) ⊂ Λ, the
measure pλ∗,τ∗(λ)dλ is absolutely continuous w.r.t. the uniform prior π and the Kullback-
Leibler divergence between these two measures equals log

{
Leb(Λ)/Leb

(
Bλ∗(τ∗)

)}
. Using

Leb
(
Bλ∗(τ∗)

)
≥ (2τ∗/

√
M )M and the Lipschitz condition, we get the desired inequality.

Note that it is not very stringent to require the risk function rλ to be Lipschitz continuous,
especially since this condition needs not be satisfied uniformly in f . Let us consider the
ridge regression: for a given design matrix X ∈ R

n×p, Aλ = X(X⊤X + γnλIn×n)
−1X⊤ and

bλ = 0 with λ ∈ [λ∗, λ
∗], γn being a given normalization factor typically set to n or

√
n,

λ∗ > 0 and λ∗ ∈ [λ∗,∞]. One can easily check the Lipschitz property of the risk function with
Lr = Lr(f) = 4λ−1

∗ ‖f‖2n + (2/n)Tr(Σ).
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5.3. Sparsity oracle inequality. The continuous oracle inequality stated in the previous
subsection is well adapted to the problems in which the dimension M of Λ is small w.r.t. the
sample size n (or, more precisely, the signal to noise ratio n/|||Σ|||). When this is not the case,
the choice of the prior should be done more carefully. For instance, consider Λ ⊂ R

M with
large M under the sparsity scenario: there is a sparse vector λ∗ ∈ Λ such that the risk of f̂λ∗

is small. Then, it is natural to choose a prior that favors sparse λ’s. This can be done in the
same vein as in [19, 20, 22, 23], by means of the heavy tailed prior:

π(dλ) ∝
M∏

m=1

1

(1 + |λm/τ |2)2
1lΛ(λ), (5.3)

where τ > 0 is a tuning parameter.

Proposition 3. Let Σ̂ be unbiased, independent of Y . Let Λ = R
M and let π be defined

by (5.3). Assume that the mapping λ 7→ rλ is continuously differentiable and, for some M×M
matrix M, satisfies:

rλ − rλ′ −∇r⊤
λ′(λ− λ′) ≤ (λ− λ′)⊤M(λ− λ′), ∀λ,λ′ ∈ Λ. (5.4)

Under Setting 1 if β ≥ 8|||Σ|||, then the aggregate f̂
EWA

= f̂
GEWA

satisfies:

E
[
‖f̂

GEWA
− f‖2n

]
≤ inf

λ∈RM

{
E‖f̂λ − f‖2n +

4β

n

M∑

m=1

log
(
1 +

|λm|
τ

)}
+Tr(M)τ2. (5.5)

Moreover, (5.5) holds true under Setting 2 if β ≥ 4|||Σ|||.

Let us discuss here some consequences of this sparsity oracle inequality. First of all, consider
the case of (linearly) combining frozen estimators, i.e., when f̂λ =

∑M
j=1 λjϕj with some

known functions ϕj . Then, it is clear that rλ − rλ′ − ∇r⊤
λ′(λ − λ′) = 2(λ − λ′)⊤Φ(λ − λ′),

where Φ is the Gram matrix defined by Φi,j = 〈ϕi|ϕj〉n. So the condition in Proposition 3
consists in bounding the Gram matrix of the atoms ϕj . Let us remark that in this case—see,
for instance, [20, 21]—Tr(M) is on the order of M and the choice τ =

√
β/(nM) ensures

that the last term in the right-hand side of Eq. (5.5) decreases at the parametric rate 1/n.
This is the choice we recommend for practical applications.

As a second example, let us consider the case of a large number of linear estimators ĝ1 =
G1Y , . . . , ĝM = GMY satisfying conditions of Setting 1 and such that maxm=1,...,M |||Gm||| ≤
1. Assume we aim at proposing an estimator mimicking the behavior of the best possible
convex combination of a pair of estimators chosen among ĝ1, . . . , ĝM . This task can be
accomplished in our framework by setting Λ = R

M and f̂λ = λ1ĝ1 + . . . λM ĝM , where
λ = (λ1, . . . , λM ). Remark that if {ĝm} satisfies conditions of Setting 1, so does {f̂λ}.
Moreover, the mapping λ 7→ rλ is quadratic with Hessian matrix ∇2rλ given by the en-
tries 2〈Gmf |Gm′f〉n + 2

n Tr(Gm′ΣGm), m,m′ = 1, . . . ,M . It implies that Inequality (5.4)
holds with M = ∇2rλ/2. Therefore, denoting by σ2i the ith diagonal entry of Σ and setting
σ = (σ1, . . . , σn), we get Tr(M) ≤ |||∑M

m=1G
2
m|||

[
‖f‖2n+ ‖σ‖2n

]
≤M

[
‖f‖2n+ ‖σ‖2n

]
. Applying

Proposition 3 with τ =
√
β/(nM), we get

E
[
‖f̂

EWA
− f‖2n

]
≤ inf

α,m,m′
E
[
‖αĝm + (1− α)ĝm′ − f‖2n

]

+
8β

n
log

(
1 +

[Mn

β

]1/2)
+
β

n

[
‖f‖2n + ‖σ‖2n

]
, (5.6)
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where the inf is taken over all α ∈ [0, 1] and m,m′ ∈ {1, . . . ,M}. This inequality is derived
from (5.5) by upper-bounding the infλ∈RM by the infimum over λ’s having at most two non-
zero coefficients, λm0

and λm′
0
, that are non-negative and sum to one: λm0

+ λm′
0
= 1. To get

(5.6), one simply notes that only two terms of the sum
∑

m log
(
1 + |λm|τ−1

)
are non-zero

and each of them is not larger than log
(
1 + τ−1

)
. Thus, one can achieve using EWA the

best possible risk over the convex combinations of a pair of linear estimators—selected from
a large (but finite) family—at the price of a residual term that decreases at the parametric
rate up to a log factor.

5.4. Oracle inequalities for varying-block-shrinkage estimators. Let us consider now the
problem of aggregation of two-block shrinkage estimators. This means that the constituent
estimators have the following form: for λ = (a, b, k) ∈ [0, 1]2 × {1, . . . , n} := Λ, f̂λ = AλY

where Aλ = diag
(
a1l(i ≤ k) + b1l(i > k), i = 1, · · · , n

)
. Let us choose the prior π as uniform

on Λ.

Proposition 4. Let f̂
EWA

be the exponentially weighted aggregate having as constituent
estimators two-block shrinkage estimators AλY . If Σ is diagonal, then for any λ ∈ Λ and for
any β ≥ 8|||Σ|||,

E
[
‖f̂

EWA
− f‖2n

]
≤ E

[
‖f̂λ − f‖2n

]
+
β

n

{
1 + log

(
n2‖f‖2n + nTr(Σ)

12β

)}
. (5.7)

In the case Σ = In×n, this result is comparable to [43, p. 20, Thm. 2.49], which states that
in the homoscedastic regression model (Σ = In×n), EWA acting on two-block positive-part
James-Stein estimators satisfies, for any λ ∈ Λ such that 3 ≤ k ≤ n − 3 and for β = 8, the
oracle inequality

E
[
‖f̂Leung − f‖2n

]
≤ E

[
‖f̂λ − f‖2n

]
+

9

n
+

8

n
min
K>0

{
K ∨

(
log

n− 6

K
− 1

)}
. (5.8)

6. Application to minimax adaptive estimation. Pinsker proved in his celebrated
paper [48], that in the model (1.1) the minimax risk over ellipsoids can be asymptotically
attained by a linear estimator. Let us denote by θk(f) = 〈f |ϕk〉n the coefficients of the (or-
thogonal) discrete cosine1 (DCT) transform of f , hereafter denoted by Df . Pinsker’s result—
restricted to Sobolev ellipsoids FD(α,R) =

{
f ∈ R

n :
∑n

k=1 k
2αθk(f)

2 ≤ R
}
—states that,

as n→ ∞, the equivalences

inf
f̂

sup
f∈FD(α,R)

E
[
‖f̂ − f‖2n

]
∼ inf

A
sup

f∈FD(α,R)
E
[
‖AY − f‖2n

]
(6.1)

∼ inf
w>0

sup
f∈FD(α,R)

E
[
‖Aα,wY − f‖2n

]
(6.2)

hold [60, Theorem 3.2], where the first inf is taken over all possible estimators f̂ and Aα,w =
D⊤diag

(
(1−kα/w)+; k = 1, . . . , n

)
D is the Pinsker filter in the discrete cosine basis. In simple

words, this implies that the (asymptotically) minimax estimator can be chosen from the quite
narrow class of linear estimators with Pinsker’s filter. However, it should be emphasized that

1The results of this section hold true not only for the discrete cosine transform, but for any linear transform
D such that DD

⊤ = D
⊤
D = n

−1
In×n.
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the minimax linear estimator depends on the parameters α and R, that are generally unknown.
An (adaptive) estimator, that does not depend on (α,R) and is asymptotically minimax over
a large scale of Sobolev ellipsoids has been proposed by Efromovich and Pinsker [27]. The next
result, that is a direct consequence of Theorem 1, shows that EWA with linear constituent
estimators is also asymptotically sharp adaptive over Sobolev ellipsoids.

Proposition 5. Let λ = (α,w) ∈ Λ = R
2
+ and consider the prior

π(dλ) =
2n

−α/(2α+1)
σ(

1 + n
−α/(2α+1)
σ w

)3 e
−αdαdw, (6.3)

where nσ = n/σ2. Then, in model (1.1) with homoscedastic errors, the aggregate f̂EWA based
on the temperature β = 8σ2 and the constituent estimators f̂α,w = Aα,wY (with Aα,w being
the Pinsker filter) is adaptive in the exact minimax sense2 on the family of classes {FD(α,R) :
α > 0, R > 0}.

It is worth noting that the exact minimax adaptivity property of our estimator f̂EWA is
achieved without any tuning parameter. All previously proposed methods that are provably
adaptive in exact minimax sense depend on some parameters such as the lengths of blocks for
blockwise Stein [14] and Efromovich-Pinsker [28] estimators or the step of discretization and
the maximal value of bandwidth [15]. Another nice property of the estimator f̂

EWA
is that it

does not require any pilot estimator based on the data splitting device [30].
We now turn to the setup of heteroscedastic regression, which corresponds to ill-posed

inverse problems as described in Section 4. To achieve adaptivity in the exact minimax sense,
we make use of f̂

GEWA
, the grouped version of the exponentially weighted aggregate. We

assume hereafter that the matrix Σ is diagonal with diagonal entries σ21 , . . . , σ
2
n satisfying the

following property:

∃ σ∗, γ > 0 such that σ2k = σ2∗k
2γ(1 + ok(1)) as k → ∞. (6.4)

This kind of problems arise when T is a differential operator or the Radon transform [12,
Section 1.3]. To handle such situations, we define the groups in the same spirit as the weakly
geometrically increasing blocks in [13]. Let ν = νn be a positive integer that increases as

n→ ∞. Set ρn = ν
−1/3
n and define

Tj =

{
(1 + νn)

j−1 − 1, j = 1, 2,

Tj−1 + ⌊νnρn(1 + ρn)
j−2⌋, j = 3, 4, . . . ,

(6.5)

where ⌊x⌋ stands for the largest integer strictly smaller than x. Let J be the smallest integer
j such that Tj ≥ n. We redefine TJ+1 = n and set Bj = {Tj +1, . . . , Tj+1} for all j = 1, . . . , J .

Proposition 6. Let the groups B1, . . . , BJ be defined as above with νn satisfying log νn/ log n→
∞ and νn → ∞ as n→ ∞. Let λ = (α,w) ∈ Λ = R

2
+ and consider the prior

π(dλ) =
2n−α/(2α+2γ+1)

(
1 + n−α/(2α+2γ+1)w

)3 e
−αdαdw. (6.6)

2see [60, Definition 3.8]
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Then, in model (1.1) with diagonal covariance matrix Σ = diag(σ2k; 1 ≤ k ≤ n) satisfy-

ing condition (6.4), the aggregate f̂
GEWA

(under Setting 1) based on the temperatures βj =
8maxi∈Bj

σ2i and the constituent estimators f̂α,w = Aα,wY (with Aα,w being the Pinsker fil-
ter) is adaptive in the exact minimax sense on the family of classes {F(α,R) : α > 0, R > 0}.

Note that this result provides an estimator attaining the optimal constant in the minimax
sense when the unknown signal lies in an ellipsoid. This property holds because minimax
estimators over the ellipsoids are linear. For other subsets of Rn, such as hyper-rectangles,
Besov bodies and so on, this is not true anymore. However, as proved by Donoho, Liu and
MacGibbon [26], for orthosymmetric quadratically convex sets the minimax linear estimators
have a risk which is within 25% of the minimax risk among all estimates. Therefore, following
the approach developed here for the set of ellipsoids, it is also possible to prove that GEWA
can lead to an adaptive estimator whose risk is within a factor 5/4 of the minimax risk, e.g., ,
for a broad class of hyperrectangles.

7. Experiments. In this section, we present some numerical experiments on synthetic
data, by focusing only on the case of homoscedastic Gaussian noise (Σ = σ2In×n) with known
variance. Following the philosophy of reproducible research, a toolbox is made available freely
for download at the following address http://people.math.jussieu.fr/~salmon/code/index_codes.php.
Additional details and numerical experiments can be found in [18, 54].

We evaluate different estimation routines on several 1D signals, introduced by Donoho and
Johnstone [24] and considered as a benchmark in the literature on signal processing. The six
signals we retained for our experiments because of their diversity are depicted in Figure 1.
Since these signals are non-smooth, we have also carried out experiments on their smoothed
versions obtained by taking the antiderivative (cf., Figure 1). Experiments on non-smooth
(resp. smooth) signals are referred to as Experiment I (resp. Experiment II). In both cases,
prior to applying estimation routines, we normalize the (true) sampled signal to have an

empirical norm equal to one and use the DCT denoted by θ(Y ) =
(
θ1(Y ), . . . , θn(Y )

)⊤
.

The four tested estimation routines—including EWA—are detailed below.

• soft-thresholding (ST) [24]: For a given shrinkage parameter t, the soft-thresholding
estimator of the vector of DCT coefficients θk(f) is

θ̂k = sgn
(
θk(Y )

)(
|θk(Y )| − σt

)
+
. (7.1)

In our experiments, we use the threshold minimizing the estimated unbiased risk defined
via Stein’s lemma. This procedure is referred to as SURE-shrink [25].

• Blockwise James-Stein (BJS) shrinkage [10]: The set of indices {1, . . . , n} is par-
titioned into N = [n/ log(n)] non-overlapping blocks B1, B2, . . . , BN of equal size L (if
n is not a multiple of N , the last block may be of smaller size than all the others). The
corresponding blocks of true coefficients θBk

(f) =
(
θj(f)

)
j∈Bk

are then estimated by:

θ̂Bk
=

(
1− λLσ2

S2
k(Y )

)

+

θBk
(Y ), k = 1, . . . , N, (7.2)

with blocks of noisy coefficients θBk
(Y ), S2

k = ‖θBk
(Y )‖22 and λ = 4.50524.

• Unbiased risk estimate (URE) minimization with Pinsker’s filters [15]: This
method consists in using a Pinsker filter, as defined in Section 6 above, with a data-
driven choice of parameters α and w. This choice is done by minimizing an unbiased

http://people.math.jussieu.fr/~salmon/code/index_codes.php
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(a) Test signals in Experiment I (b) Test signals in Experiment II

Fig 1. Test signals used in our experiments: Piece-Regular, Ramp, Piece-Polynomial, HeaviSine, Doppler and
Blocks. (a) non-smooth (Experiment I) and (b) smooth (Experiment II).

estimate of the risk over a suitably chosen grid for the values of α and w. Here, we
use geometric grids ranging from 0.1 to 100 for α and from 1 to n for w. Thus, the
bi-dimensional grid used in all the experiments has 100× 100 elements. We refer to [15]
for the closed-form formula of the unbiased risk estimator and further details.

• EWA on Pinsker’s filters: We consider the same finite family of linear filters (defined
by Pinsker’s filters) as in the URE routine described above. According to Proposition 1,
this leads to an estimator nearly as accurate as the best Pinsker’s estimator in the given
family.

To report the result of our experiments, we have also computed the best linear smoother
based on a Pinsker filter chosen among the candidates that we used for defining URE and
EWA. By best smoother we mean the one minimizing the squared error (it can be computed
since we know the ground truth). This pseudo-estimator will be referred to as oracle. Results
summarized in Table 1 for Experiment I and Table 2 for Experiment II correspond to the
average over 1000 trials of the mean squared error (MSE) from which we subtract the MSE
of the oracle and multiply the resulting difference by the sample size. We report the results
for σ = 0.33 and for n ∈ {28, 29, 210, 211}.

Simulations show that EWA and URE have very comparable performances and are signif-
icantly more accurate than soft-thresholding and block James-Stein (cf., Table 1) for every
size n of signals considered. Improvements are particularly important when signals have large
peaks or discontinuities. In most cases, EWA also outperforms URE, but differences are less
pronounced. One can also observe that for smooth signals, the difference of MSEs between
EWA and the oracle, multiplied by n, remains nearly constant when n varies. This is in
agreement with our theoretical results in which the residual term decreases to zero inversely
proportionally to n.

Of course, soft-thresholding and blockwise James-Stein procedures have been designed
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for being applied to the wavelet transform of a Besov smooth function, rather than to the
Fourier transform of a Sobolev-smooth function. However, the point here is not to demonstrate
the superiority of EWA as compared to ST and BJS procedures. The point is to stress the
importance of having sharp adaptivity up to optimal constant and not simply adaptivity
in the sense of rate of convergence. Indeed, the procedures ST and BJS are provably rate-
adaptive when applied to Fourier transform of a Sobolev-smooth function, but they are not
sharp adaptive—they do not attain the optimal constant—whereas EWA and URE do attain.

n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler

256 0.051 0.245 9.617 4.846 0.062 0.212 13.233 6.036
(0.42) (0.39) (1.78) (1.29) (0.35) (0.31) (2.11) (1.23)

512 -0.052 0.302 13.807 9.256 -0.100 0.205 17.080 12.620
(0.35) (0.50) (2.16) (1.70) (0.30) (0.39) (2.29) (1.75)

1024 -0.050 0.299 19.984 17.569 -0.107 0.270 21.862 23.006
(0.36) (0.46) (2.68) (2.17) (0.35) (0.41) (2.92) (2.35)

2048 -0.007 0.362 28.948 30.447 -0.150 0.234 28.733 38.671
(0.42) (0.57) (3.31) (2.96) (0.34) (0.42) (3.19) (3.02)

HeaviSine Piece-Regular

256 -0.060 0.247 1.155 3.966 -0.069 0.248 8.883 4.879
(0.19) (0.42) (0.57) (1.12) (0.32) (0.40) (1.76) (1.20)

512 -0.079 0.215 2.064 5.889 -0.105 0.237 12.147 9.793
(0.19) (0.39) (0.86) (1.36) (0.30) (0.37) (2.28) (1.64)

1024 -0.059 0.240 3.120 8.685 -0.092 0.291 15.207 16.798
(0.23) (0.36) (1.20) (1.64) (0.34) (0.46) (2.18) (2.13)

2048 -0.051 0.278 4.858 12.667 -0.059 0.283 21.543 27.387
(0.25) (0.48) (1.42) (2.03) (0.34) (0.54) (2.47) (2.77)

Ramp Piece-Polynomial

256 0.038 0.294 6.933 5.644 0.017 0.203 12.201 3.988
(0.37) (0.47) (1.54) (1.20) (0.37) (0.37) (1.81) (1.19)

512 0.010 0.293 9.712 9.977 -0.078 0.312 17.765 9.031
(0.36) (0.51) (1.76) (1.67) (0.35) (0.49) (2.72) (1.62)

1024 -0.002 0.300 13.656 16.790 -0.026 0.321 23.321 17.565
(0.30) (0.45) (2.25) (2.06) (0.38) (0.48) (2.96) (2.28)

2048 0.007 0.312 19.113 27.315 -0.007 0.314 31.550 29.461
(0.34) (0.50) (2.68) (2.61) (0.41) (0.49) (3.05) (2.95)

Table 1

Evaluation of 4 adaptive methods on 6 (non-smooth) signals. For each sample size and each method, we
report the average value of n(MSE−MSEOracle) and the corresponding standard deviation (in parentheses),

for 1000 replications of the experiment.

8. Summary and future work. In this paper, we have addressed the problem of aggre-
gating a set of affine estimators in the context of regression with fixed design and heteroscedas-
tic noise. Under some assumptions on the constituent estimators, we have proven that EWA
with a suitably chosen temperature parameter satisfies PAC-Bayesian type inequality, from
which different types of oracle inequalities have been deduced. All these inequalities are with
leading constant one and rate-optimal residual term. As an application of our results, we have
shown that EWA acting on Pinsker’s estimators, produces an adaptive estimator in the exact
minimax sense.

Next in our agenda is carrying out an experimental evaluation of the proposed aggregate
using the approximation schemes described by Dalalyan and Tsybakov [21], Rigollet and
Tsybakov [52, 53] and Alquier and Lounici [1], with a special focus on the problems involving
large scale data.

Although we do not assume the covariance matrix Σ of the noise to be known, our approach
relies on an unbiased estimator of Σ which is independent on the observed signal and on an
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upper bound on the largest singular value of Σ. In some applications, such an information
may be hard to obtain and it can be helpful to relax the assumptions on Σ̂. This is another
interesting avenue for future research for which, we believe, the approach developed by Giraud
[33] can be of valuable guidance.

n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler

256 0.387 0.216 0.216 2.278 0.214 0.237 1.608 2.777
(0.43) (0.40) (0.24) (0.98) (0.23) (0.40) (0.73) (1.04)

512 0.170 0.209 0.650 3.193 0.165 0.250 1.200 3.682
(0.20) (0.41) (0.25) (1.07) (0.20) (0.44) (0.48) (1.24)

1024 0.162 0.226 1.282 4.507 0.147 0.229 1.842 5.043
(0.18) (0.41) (0.44) (1.28) (0.19) (0.45) (0.86) (1.43)

2048 0.120 0.220 1.574 6.107 0.138 0.229 1.864 6.584
(0.17) (0.37) (0.55) (1.55) (0.20) (0.40) (1.07) (1.58)

HeaviSine Piece-Regular

256 0.217 0.207 1.399 2.496 0.269 0.279 2.120 2.053
(0.16) (0.42) (0.54) (0.96) (0.27) (0.49) (1.09) (0.95)

512 0.206 0.221 0.024 3.045 0.216 0.248 2.045 2.883
(0.18) (0.43) (0.26) (1.10) (0.20) (0.45) (1.17) (1.13)

1024 0.179 0.200 0.113 3.905 0.183 0.228 1.251 3.780
(0.18) (0.50) (0.27) (1.27) (0.20) (0.41) (0.70) (1.37)

2048 0.162 0.189 0.421 5.019 0.145 0.223 1.650 4.992
(0.15) (0.37) (0.27) (1.53) (0.19) (0.42) (1.12) (1.42)

Ramp Piece-Polynomial

256 0.162 0.200 0.339 2.770 0.215 0.257 1.486 2.649
(0.16) (0.38) (0.24) (1.00) (0.25) (0.48) (0.68) (1.01)

512 0.150 0.215 0.425 3.658 0.170 0.243 1.865 3.683
(0.18) (0.38) (0.23) (1.20) (0.20) (0.46) (0.84) (1.20)

1024 0.146 0.211 0.935 4.815 0.179 0.236 1.547 5.017
(0.18) (0.39) (0.33) (1.35) (0.20) (0.47) (1.02) (1.38)

2048 0.141 0.221 1.316 6.432 0.165 0.210 2.246 6.628
(0.20) (0.43) (0.42) (1.54) (0.20) (0.39) (1.15) (1.70)

Table 2

Evaluation of 4 adaptive methods on 6 smoothed signals. For each sample size and each method, we report the
average value of n(MSE−MSEOracle) and the corresponding standard deviation (in parentheses), for 1000

replications of the experiment.

APPENDIX A: PROOFS OF MAIN THEOREMS

We develop now the detailed proofs of the results stated in the manuscript.

A.1. Stein’s lemma. The proofs of our main results rely on Stein’s lemma [58], re-
called below, providing an unbiased risk estimate for any estimator that depends sufficiently
smoothly on the data vector Y .

Lemma 1. Let Y be a random vector drawn form the Gaussian distribution Nn(f ,Σ). If

the estimator f̂ is a.e. differentiable in Y and the elements of the matrix ∇ · f̂⊤
:= (∂if̂j)

have finite first moment, then

r̂ = ‖Y − f̂‖2n +
2

n
Tr[Σ(∇ · f̂⊤

)]− 1

n
Tr[Σ],

is an unbiased estimate of r, i.e., E[r̂] = r.
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The proof can be found in [60, p.157]. We apply Stein’s lemma to the affine estimators
f̂λ = AλY + bλ, with Aλ an n × n deterministic real matrix and bλ ∈ R

n a deterministic
vector. We get that if Σ̂ is an unbiased estimator of Σ, then

r̂unbλ =
∥∥Y − f̂λ

∥∥2
n
+

2

n
Tr[Σ̂Aλ]−

1

n
Tr[Σ̂]

is an unbiased estimator of the risk

rλ = E[‖f̂λ − f‖2n] = ‖(Aλ − In×n)f + bλ‖2n +
1

n
Tr[AλΣA

⊤
λ ].

A.2. An auxiliary result. Prior to proceeding with the proof of main theorems, we
prove an important auxiliary result which is the central ingredient of the proofs for our main
results.

Lemma 2. Let assumptions of Lemma 1 be satisfied. Let {f̂λ : λ ∈ Λ} be a family of
estimators of f and {r̂λ : λ ∈ Λ} a family of risk estimates such that the mapping Y 7→ (f̂λ, r̂λ)
is a.e. differentiable for every λ ∈ Λ. Let r̂unbλ be the unbiased risk estimate of f̂λ given by
Stein’s lemma.

1) For every π ∈ PΛ and for any β > 0, the estimator f̂
EWA

defined as the average of f̂λ
w.r.t. to the probability measure

π̂(Y , dλ) = θ(Y , λ)π(dλ) with θ(Y , λ) ∝ exp
{
− nr̂λ(Y )/β

}

admits

r̂EWA =

∫

Λ

(
r̂unbλ − ‖f̂λ − f̂

EWA
‖2n − 2n

β

〈
∇Y r̂λ|Σ(f̂λ − f̂

EWA
)
〉
n

)
π̂(dλ)

as unbiased estimator of the risk.
2) If furthermore r̂λ ≥ r̂unbλ , ∀λ ∈ Λ and

∫
Λ

〈
n∇Y r̂λ|Σ(f̂λ − f̂

EWA
)
〉
n
π̂(dλ) ≥ −a

∫
Λ ‖f̂λ −

f̂EWA‖2nπ̂(dλ) for some constant a > 0, then for every β ≥ 2a it holds that

E[‖f̂
EWA

− f‖2n] ≤ inf
p∈PΛ

{∫

Λ
E[r̂λ] p(dλ) +

βK(p, π)

n

}
. (A.1)

Proof. According to the Stein lemma, the quantity

r̂EWA = ‖Y − f̂
EWA

‖2n +
2

n
Tr[Σ(∇ · f̂

EWA
(Y )]− 1

n
Tr[Σ] (A.2)

is an unbiased estimate of the risk rn = E
[
‖f̂

EWA
− f‖2n

]
. Using simple algebra, one checks

that

‖Y − f̂EWA‖2n =

∫

Λ

(
‖Y − f̂λ‖2n − ‖f̂λ − f̂EWA‖2n

)
π̂(dλ). (A.3)

By interchanging the integral and differential operators, we get the following relation: ∂yi f̂EWA,j =∫
Λ

{(
∂yi f̂λ,j(Y )

)
θ(Y , λ) + f̂λ,j(Y )

(
∂yiθ(Y , λ)

)}
π(dλ). Then, combining this equality with

Equations (A.2) and (A.3) implies that

r̂EWA =

∫

Λ

(
r̂unbλ − ‖f̂λ − f̂EWA‖2n

)
π̂(dλ) +

2

n

∫

Λ
Tr[Σf̂λ∇Y θ(Y , λ)

⊤]π(dλ).
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Interchanging differentiation and integration, we get
∫

Λ
f̂

EWA

(
∇Y θ(Y , λ)

)⊤
π(dλ) = f̂

EWA
∇Y

( ∫

Λ
θ(Y , λ)π(dλ)

)
= 0

and, therefore, we come up with the following expression for r̂EWA:

r̂EWA =

∫

Λ

(
r̂unbλ − ‖f̂λ − f̂n‖2n + 2

〈
∇Y log θ(λ)|Σ(f̂λ − f̂

EWA
)
〉
n

)
π̂(dλ)

=

∫

Λ

(
r̂unbλ − ‖f̂λ − f̂

EWA
‖2n − 2nβ−1

〈
∇Y r̂λ|Σ(f̂λ − f̂

EWA
)
〉
n

)
π̂(dλ).

This completes the proof of the first assertion of the lemma.
To prove the second assertion, let us observe that under the required condition and in view

of the first assertion, for every β ≥ 2a it holds that r̂EWA ≤
∫
Λ r̂

unb
λ π̂(dλ) ≤

∫
Λ r̂λπ̂(dλ) ≤∫

Λ r̂λπ̂(dλ) +
β
nK(π̂, π). To conclude, it suffices to remark that π̂ is the probability measure

minimizing the criterion
∫
Λ r̂λp(dλ)+

β
nK(p, π) among all p ∈ PΛ. Thus, for every p ∈ PΛ, we

have

r̂EWA ≤
∫

Λ
r̂λp(dλ) +

β

n
K(p, π).

Taking the expectation of both sides, the desired result follows.

A.3. Proof of Theorem 1.

Assertion i). In what follows, we use the matrix shorthands I = In×n and AEWA ,
∫
ΛAλπ̂(dλ).

We apply Lemma 2 with r̂λ = r̂unbλ . To check the conditions of the second part of Lemma 2,
note that in view of Eq. (2.4) and (2.6), as well as the assumptions A⊤

λ = Aλ and Aλ′bλ = 0,
we get

∇Y r̂
unb
λ =

2

n
(I −Aλ)

⊤(I −Aλ)Y − 2

n
(I −Aλ)

⊤bλ =
2

n
(I −Aλ)

2Y − 2

n
bλ.

Recall now that for any pair of commuting matrices P and Q the identity (I − P )2 = (I −
Q)2+2

(
I− P+Q

2

)
(Q−P ) holds true. Applying this identity to P = Aλ and Q = AEWA (in view

of the commuting property of the Aλ’s) we get the following relation:
〈
(I − Aλ)

2Y |Σ(Aλ −
AEWA)Y

〉
n
=

〈
(I−AEWA)

2Y |Σ(Aλ−AEWA)Y
〉
n
−2

〈(
I− AEWA+Aλ

2

)
(AEWA−Aλ)Y |Σ(AEWA−

Aλ)Y
〉
n
. When one integrates over Λ with respect to the measure π̂, the term of the first

scalar product in the right-hand side of the last equation vanishes. On the other hand,

〈Aλ(AEWA −Aλ)Y |Σ(AEWA −Aλ)Y 〉n
= 〈Aλ(f̂EWA

− f̂λ)|Σ(f̂EWA
− f̂λ)〉n

= 〈(f̂
EWA

− f̂λ)|AλΣ(f̂EWA
− f̂λ)〉n

=
1

2n
(f̂

EWA
− f̂λ)

⊤(AλΣ+ ΣAλ)(f̂EWA
− f̂λ) ≥ 0.

Since positive semi-definiteness of matrices ΣAλ+AλΣ implies the one of the matrix ΣAEWA+
ΣAEWA, we also have 〈AEWA(AEWA −Aλ)Y |Σ(AEWA −Aλ)Y 〉n ≥ 0. Therefore,

〈(
I − AEWA +Aλ

2

)
(AEWA −Aλ)Y |Σ(AEWA −Aλ)Y

〉
n

≤ 〈(f̂
EWA

− f̂λ)|Σ(f̂EWA
− f̂λ)〉n

= ‖Σ1/2(f̂
EWA

− f̂λ)‖2n.
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This inequality implies that
∫

Λ

〈
n∇Y r̂

unb
λ |Σ(f̂λ − f̂

EWA
)
〉
n
π̂(dλ) ≥ −4

∫

Λ
‖Σ1/2(f̂λ − f̂

EWA
)‖2nπ̂(dλ).

Therefore, the claim of Theorem 1 holds true for every β ≥ 8|||Σ|||.
Assertion ii). Let now f̂λ = AλY + bλ with symmetric Aλ � In×n and bλ ∈ Ker(Aλ). Using

the definition r̂adjλ = r̂unbλ + 1
nY

⊤(Aλ − A2
λ)Y , one easily checks that r̂adjλ ≥ r̂unbλ for every λ

and that ∫

Λ

〈
n∇r̂adjλ |Σ(f̂λ − f̂

EWA
)
〉
n
π̂(dλ) =

∫

Λ

〈
2(Y − f̂λ)|Σ(f̂λ − f̂

EWA
)
〉
n
π̂(dλ)

= −2

∫

Λ

∥∥Σ1/2(f̂λ − f̂
EWA

)
∥∥2
n
π̂(dλ).

Therefore, if β ≥ 4|||Σ|||, all the conditions required in the second part of Lemma 2 are fulfilled.
Applying this lemma, we get the desired result.

A.4. Proof of Theorem 2. We apply the result of assertion ii) of Thm. 1 to the prior

π(dλ) replaced by the probability measure proportional to e
2
β
Tr[Σ̂(Aλ−Aλ

⊤Aλ)]π(dλ). This leads
to

E
[
‖f̃

SEWA
− f‖2n

]
≤ inf

p∈PΛ

{∫

Λ
E
[
‖f̂λ − f‖2n

]
p(dλ) +

β

n
K(p, π)

}

+
β

n
E

[
log

∫

Λ
e

2
β
Tr[Σ̂(Aλ−Aλ

⊤Aλ)]π(dλ)

]
.

Condition (C) entails that the last term is always non-negative and the result follows.

A.5. Proof of Theorem 3. Let us place ourselves in Setting 1. It is clear that E
[
‖f̂GEWA−

f‖2n
]
=

∑J
j=1 E

[
‖f̂ j

GEWA
− f j‖2n

]
. For each j ∈ {1, . . . , J}, since βj ≥ 8|||Σj|||, one can apply

assertion i) of Thm. 1, which leads to the desired result. The case of Setting 2 is handled in
the same manner.

APPENDIX B: PROOFS OF PROPOSITIONS

B.1. Proof of Proposition 2. Let us fix λ∗ ∈ Λ. It suffices to apply Theorem 3 and to
upper-bound the right-hand side of inequality (2.8):

E
[
‖f̂

EWA
− f‖2n

]
≤ inf

p∈PΛ

(∫

Λ
[|rλ − rλ∗ |+ rλ∗ ] p(dλ) +

β

n
K(p, π)

)
.

Then, the right-hand side of the last inequality can be bounded from above by the expres-
sion in parentheses evaluated at the probability measure p given by the density p∗(λ) =
1lBλ∗ (τ

∗)(λ)/Leb(Bλ∗(τ∗)). Assume moreover that τ∗ is such that Bλ∗(τ∗) ⊂ Λ, then using the
Lipschitz condition on rλ, the bound on the risk becomes

E
[
‖f̂

EWA
− f‖2n

]
≤

∫

Λ
[|rλ − rλ∗ |+rλ∗ ] p∗(dλ) +

β

n
K(p∗, π)

≤ rλ∗+Lr

∫

Λ
‖λ− λ∗‖2 p∗(dλ) +

β

n
K(p∗, π)

≤ rλ∗ + Lrτ
∗ +

β

n
K(p∗, π). (B.1)
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Now, since λ∗ is such that Bλ∗(τ∗) ⊂ Λ, the measure p∗(λ) dλ is absolutely continuous w.r.t.
the uniform prior π over Λ and the Kullback-Leibler divergence between these measures equals
log

{
Leb(Λ)/Leb

(
Bλ∗(τ∗)

)}
. By the simple inequality ‖x‖22 ≤ M‖x‖2∞ for any x ∈ R

M , one

can see that the Euclidean ball of radius τ∗ contains the hypercube of width 2τ∗/
√
M . So

we have the following lower bound for the volume Bλ∗ : Leb
(
Bλ∗(τ∗)

)
≥ (2τ∗/

√
M)M . By

combining this with inequality (B.1) the results of Proposition 2 is straightforward.

B.2. Proof of Proposition 3. We start the proof as the one of the previous proposition,
but pushing the development of the function λ 7→ rλ up to second order. So, for any λ∗ ∈ R

M ,
the risk of EWA E

[
‖f̂

EWA
− f‖2n

]
is upper-bounded by

rλ∗ +

∫

Λ

(
∇r⊤λ∗(λ−λ∗) + (λ−λ∗)⊤M(λ−λ∗)

)
p∗(dλ) +

β

n
K(p∗, π).

By choosing p∗(λ) = π(λ − λ∗) for any λ ∈ R, the second term in the last display vanishes
since the distribution π is symmetric. The third term is computed thanks to the moment of
order 2 of a scaled Student t(3) distribution. Recall that if ζ is drawn from the scaled Student
t(3) distribution, its density function is u → 2/[π(1 + u2)2], and E[ζ2] = 1. Thus, we have
that

∫
Λ λ

2
1π(λ)dλ = τ2. We can then bound the risk of EWA as follows:

E
[
‖f̂

EWA
− f‖2n

]
≤ inf

λ∗∈RM

(
rλ∗ +Tr(M)τ2 +

β

n
K(p∗, π)

)
(B.2)

So far, the particular choice of heavy tailed prior has not been used. This choice is impor-
tant to control the Kullback-Leibler divergence between two translated versions of the same
distribution:

K(p∗, π) =

∫

Λ
log

[
M∏

m=1

(τ2 + λ2m)2

(τ2 + (λm − λ∗m)2)2

]
p∗(dλ)

= 2
M∑

m=1

∫

Λ
log

[
τ2 + λ2m

τ2 + (λm − λ∗m)2

]
p∗(dλ) .

We bound the quotient in the above equality by

τ2 + λ2m
τ2 + (λm − λ∗m)2

= 1 +
2τ(λm − λ∗m)

τ2 + (λm − λ∗m)2
λ∗m
τ

+
(λ∗m)2

τ2 + (λm − λ∗m)2

≤ 1 +
∣∣∣λ

∗
m

τ

∣∣∣+
(λ∗m
τ

)2
≤

(
1 +

∣∣∣λ
∗
m

τ

∣∣∣
)2
.

Since the last inequality is independent of λ and p∗ is a probability measure, the integral
disappears in the previous bound on the Kullback-Leibler divergence. So we get K(p∗, π) ≤
4
∑M

m=1 log
(
1 + |λ∗

m|
τ

)
. This inequality combined with (B.2) leads to the desired result.

B.3. Proof of Proposition 4. To simplify the notation, we set σ = (σ1, . . . , σn), the
vector containing the standard deviations of the errors ξi. Let τ be a small positive num-
ber, the precise value of which will be given later. Let λ0 = (a0, b0, k0) ∈ [τ, 1 − τ ]2 ×
{1, . . . , n} be some fixed element. Let us define the probability density function p0(dλ) =
1l[a0−τ,a0+τ ](a)1l[b0−τ,b0+τ ](b)1l(k = k0)(2τ)

−2 da db.
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Note that for any λ = (a, b, k), the risk of the estimator AλY is

rλ =
1

n

k∑

i=1

(
(1− a)2f2i + a2σ2i

)
+

1

n

n∑

i=k+1

(
(1− b)2f2i + b2σ2i

)
.

In particular, the difference between the risks rλ and rλ0
—for two different parameters λ =

(a, b, k) and λ0 = (a0, b0, k0) such that k = k0 is the same in the two cases—can be rewritten
as follows:

rλ − rλ0
=
1

n

k∑

i=1

[
2(a0 − a)

{
(1− a0)f

2
i − a0σ

2
i

}
+ (a− a0)

2{f2i + σ2i }
]

+
1

n

n∑

i=k+1

[
2(b0 − b)

{
(1− b0)f

2
i − b0σ

2
i

}
+ (b− b0)

2{f2i + σ2i }
]

If we integrate w.r.t. the measure p0, the terms linear in a− a0 and b− b0 disappear and we
get

∫

Λ
(rλ − rλ0

) p0(dλ) =
1

n

n∑

i=1

{f2i + σ2i }
∫ τ

−τ
u2
du

2τ
=
τ2

3

[
‖f‖2n + ‖σ‖2n

]
.

Concerning the Kullback-Leibler divergence between p0 and π, it can be computed as follows:

K(p0, π) =

n∑

k=1

∫ ∫
log

(
p0(da, db, k)

π(da, db, k)

)
p0(da, db, k)

=

∫ a0+τ

a0−τ

∫ b0+τ

b0−τ
log

( n

4τ2

)da
2τ

db

2τ
= log

(
n

4τ2

)
. (B.3)

We can use Equation (2.8) with our choice for p0 and π, and with the last computations, we
get

E
[
‖f̂

EWA
− f‖2n

]
≤

∫

Λ
rλ p0(dλ) +

β

n
K(p0, π)

= rλ0
+

∫

Λ
(rλ − rλ0

)p0(dλ) +
β

n
log

( n

4τ2

)

= rλ0
+
τ2
[
‖f‖2n + ‖σ‖2n

]

3
+
β

n
log

( n

4τ2

)
. (B.4)

The last expression, considered as a function of τ , admits as global minimum τ2min = 3(β/n)
[
‖f‖2n+

‖σ‖2n
]
. Replacing this value in (B.4), we get the risk bound:

E
[
‖f̂EWA − f‖2n

]
≤ E

[
‖f̂λ0

− f‖2n
]
+
β

n

{
1 + log

(
n2

[
‖f‖2n + ‖σ‖2n

]

12β

)}
. (B.5)

Now, the desired result follows from the obvious equality n‖σ‖2n = Tr(Σ).
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B.4. Proof of Proposition 5. We assume, without loss of generality, that the matrix
n1/2D coincides with the identity matrix. First, let us fix α0 > 0 and R0 > 0, such that
n−1/2f ∈ F(α0, R0) and define λ0 = (α0, w0) ∈ Λ with w0 chosen such that the Pinsker
estimator f̂α0,w0

is minimax over the ellipsoid F(α0, R0).

In what follows, we set nσ = n/σ2, nσ,α = n
−α/(2α+1)
σ and we denote by pπ the probability

density function of π w.r.t. the Lebesgue measure on R
2
+: pπ(α,w) = e−αnσ,αpw(wnσ,α),

where pw is a probability density function supported by (0,∞) such that
∫
upw(u) du = 1.

One easily checks that
∫

R2

α pπ(α,w) dαdw = 1,

∫

R2

w pπ(α,w) dαdw ≤ n1/2σ . (B.6)

Let τ be a positive number such that τ ≤ min(1, α0/(2 logw0)) and choose p0 as a transla-
tion/dilatation of π, concentrating on λ0 when τ → 0:

p0(dλ) = pπ

(λ− λ0

τ

)dλ
τ2

.

In view of assertion i) of Theorem 1,

E
[
‖f̂EWA − f‖2n

]
≤ rλ0

+

∫

R2

∣∣rα,w − rα0,w0

∣∣p0(dλ) +
β

n
K(p0, π) . (B.7)

Let us decompose the term rα,w − rα0,w0
into two pieces: rα,w − rα0,w0

= {rα,w − rα,w0
} +

{rα,w0
− rα0,w0

} and find upper bounds for the resulting terms. With the choice of estimator
we did, the difference between the risk functions at (α,w) and (α,w0) is:

n(rα,w − rα,w0
) =

n∑

k=1

[(
(1− kα/w)+ − 1

)2 −
(
(1− kα/w0)+ − 1

)2]
f2k

+
n∑

k=1

[(
(1− kα/w)+

)2 −
(
(1− kα/w0)+

)2]
σ2

Since the weights of the Pinsker estimators are in [0, 1], we have

n|rα,w − rα,w0
| ≤2

n∑

k=1

(f2k + σ2) |(1− kα/w)+ − (1− kα/w0)+| . (B.8)

For any x, y ∈ R, |x+− y+| ≤ |x− y| holds. Combined with α0 ≤ α and w0 ≤ w, we have that

∣∣∣
(
1− kα

w

)
+
−

(
1− kα

w0

)
+

∣∣∣ ≤
∣∣∣k

α

w
− kα

w0

∣∣∣1l{kα≤w} ≤
w −w0

w0
. (B.9)

By virtue of Inequalities (B.8) and (B.9) we get

|rα,w − rα,w0
| ≤2n−1

n∑

k=1

(f2k + σ2)
(w − w0)

w0
≤ 2(R0 + σ2)

w − w0

w0
. (B.10)

Similar calculations lead to a bound for the other absolute difference between risk functions:

|rα,w0
− rα0,w0

| ≤ 2

n

∑

kα0≤w0

(f2k + σ2)
kα − kα0

w0
≤ 2(R0 + σ2)

(
w

α−α0
α0

0 − 1
)
. (B.11)
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Recall that we aim to bound the second term in the right-hand side of (B.7). To this end, we
need an accurate upper bound on the integrals of the right-hand sides of (B.10) and (B.11)
w.r.t. the probability measure p0. For the first one, we get

∫
|rα,w − rα,w0

| p0(dλ) ≤ 2(R0 + σ2)w−1
0

∫

R2

(w − w0)p0(dλ)

≤ 4n
1/2
σ τ

w0
(R0 + σ2) . (B.12)

Similar arguments apply to bound the integral of the second difference between risk functions:

∫

R2

|rα,w0
− rα0,w0

|p0(dλ) ≤ 2(R0 + σ2)

∫

R2

(
w

α−α0
α0

0 − 1
)
p0(dλ)

=
2τ(R0 + σ2) logw0

α0 − τ logw0

≤ 4τ(R0 + σ2)α−1
0 logw0, (B.13)

where we used the inequality τ ≤ α0/(2 logw0).
The last term to bound in inequality (B.7) requires the evaluation of the Kullback-Leibler

divergence between p0 and π. It can be done as follows:

K(p0, π) =

∫

R2

log

(
e−(α−α0)/τpw

(
(w − w0)nσ,α/τ

)

e−αpw
(
wnσ,α

) 1

τ2

)
p0(dλ)

=

∫

R2

{
α− α− α0

τ
+ log

pw
(
(w − w0)nσ,α/τ

)

pw
(
wnσ,α

)
}
p0(dλ)− 2 log(τ)

≤ α0 + (τ − 1) +

∫

R2
+

log
(
1 + wnσ,α

)3
p0(dλ)− 2 log(τ).

where the third equality is derived thanks to Eq. (B.6) and the relation ‖pw‖∞ = 2. Making
the change of variable w = w0 + τun−1

σ,α and using that w0 + τun−1
σ,α ≤ (w0 + u)n−1

σ,α, we get

∫

R2
+

log
(
1 + wnσ,α

)3
p0(dλ) ≤ 3

∫

R+

log
(
1 + w0 + u

)
pw(u)du

≤ 3 log

(
1 + w0 +

∫

R+

upw(u)du

)

= 3 log(2 + w0).

Eventually, we can reformulate our bound on the risk of EWA given in (B.7), leading to

E
[
‖f̂

EWA
− f‖2n

]
≤ rλ0

+ 4τ(R0 + σ2)
(n1/2σ

w0
+

logw0

α0

)
+

8σ2
(
α0 + 3 log

(
2+w0

τ

))

n
. (B.14)

To conclude the proof of the proposition, we set

τ =
α0

n2σ + α0 + 2 logw0
, w0 =

(R0(α0 + 1)(2α0 + 1)

α0

) α0
2α0+1

n
α0

2α0+1

σ .
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According to Pinsker’s theorem,

max
f∈F(α0,R0)

rλ0
= (1 + on(1))min

f̂

max
f∈F(α0,R0)

E
[
‖f̂ − f‖2n

]
.

In view of this result, taking the max over f ∈ F(α0, R0) in (B.14), we get

max
f∈F(α0,R)

E
[
‖f̂

EWA
− f‖2n

]
≤ (1 + on(1))min

f̂

max
f∈F(α0,R)

E
[
‖f̂ − f‖2n

]
+O

( log n
n

)
.

This leads to the desired result in view of the relation

lim inf
n→∞

min
f̂

max
f∈F(α0,R)

n
2α0

2α0+1E
[
‖f̂ − f‖2n

]
> 0.

B.5. Proof of Proposition 6. It is clear that all the conditions required in Setting 1
are fulfilled and we can apply Theorem 3 that yields:

E
[
‖f̂GEWA − f‖2n

]
≤

J∑

j=1

inf
pj

{∫

Λ
E‖f̂ j

λ − f j‖2n pj(dλ) +
βj
n

K(pj , π)
}
. (B.15)

We start by setting nα,γ = n−α/(2α+2γ+1). Let λ0 = (α0, w0) be a pair of real numbers s.t. f̂λ0

is minimax over the Sobolev ellipsoid F(α0, R0) and let pπ be the density of π: pπ(α,w) =
e−αnα,γpw(wnα,γ), where pw is a probability density function supported by (0,∞) such that∫
upw(u) du = 1. Let τ be a non-negative number such that τ ≤ min(1, α0/(2 logw0)) and

choose p0 as a translation and dilatation of π, concentrating on λ0 when τ → 0: p0(dλ) =

pπ

(
λ−λ0

τ

)
dλ
τ2
. Let J0 be a positive integer smaller than J the precise value of which will be

given later. As an immediate consequence of (B.15) we get:

E
[
‖f̂

GEWA
− f‖2n

]
≤

J0∑

j=1

(∫

Λ
E‖f̂ j

λ − f j‖2n p0(dλ) +
βj
n

K(p0, π)

)

+

J∑

j=J0+1

∫

Λ
E‖f̂ j

λ − f j‖2n π(dλ).

Repeating the arguments of the proof of Proposition 5, one can check that

J0∑

j=1

∫

Λ
E‖f̂ j

λ − f j‖2n p0(dλ) ≤ rλ0
+ 4τ

(
R0 +

1

n

TJ0+1∑

i=1

σ2i

)(n1/2
w0

+
logw0

α0

)
,

K(p0, π) ≤ α0 + 3 log
(2 + w0

τ

)
.

One readily checks
∑TJ0+1

i=1 σ2i ≤ Cσ2∗
∑TJ0+1

i=1 i2γ ≤ Cσ2∗T
2γ+1
J0+1 ≤ Cσ2∗n

2γ+1. Furthermore,

using the definition of weakly geometrically increasing groups, we get 1
2νn(1 + ρn)

j ≤ Tj+1 ≤
νn(1 + ρn)

j . This implies that

J0∑

i=1

β2j ≤ Cσ2∗

J0∑

i=1

T 2γ
j+1 ≤ Cσ2∗J0T

2γ
J0+1 ≤ Cσ2∗J0T

2γ
J0
.
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Let J0 be chosen such that T 2γ
J0

≤ n(2γ+1/2)/(2α0+2γ+1) < T 2γ
J0+1. The condition log n =

o(log νn) implies that J0T
2γ
J0

= o(n(2γ+1)/(2α0+2γ+1)). Therefore, setting τ = α0

n2+α0+2 logw0
,

we come up with

J0∑

j=1

(∫

Λ
E‖f̂ j

λ − f j‖2n p0(dλ) +
βj
n

K(p0, π)

)
= o(n−2α0/(2α0+2γ+1)),

as n → ∞. Since the minimax risk over F(α0, R0), as well as rλ0
, is on the order of

n−2α0/(2α0+2γ+1), we get

E
[
‖f̂

GEWA
− f‖2n

]
≤ rλ0

(1 + o(1)) +
J∑

j=J0+1

∫

Λ
E‖f̂ j

λ − f j‖2n π(dλ).

Using similar arguments, one checks the last sum is also o(n−2α0/(2α0+2γ+1)) and the result
follows.

REFERENCES

[1] Alquier, P. and Lounici, K. (2010). PAC-Bayesian Bounds for Sparse Regression Estimation with
Exponential Weights. Electron. J. Stat. 5 127-145.

[2] Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural
Comput. 9 1545–1588.

[3] Arlot, S. and Bach, F. (2009). Data-driven calibration of linear estimators with minimal penalties. In
NIPS 46–54.

[4] Audibert, J.-Y. (2007). Progressive mixture rules are deviation suboptimal. In NIPS 41–48.
[5] Baraud, Y., Giraud, C. and Huet, S. (2010). Estimator selection in the Gaussian setting. submitted.
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