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SHARP ORACLE INEQUALITIES FOR AGGREGATION OF AFFINE ESTIMATORS

ARNAK S. DALALYAN AND JOSEPH SALMON

ABSTRACT. We consider the problem of combining a (possibly uncountably infinite) set of affine
estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on
the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp
oracle inequalities in discrete but also in continuous settings. The framework is general enough to
cover the combinations of various procedures such as least square regression, kernel ridge regres-
sion, shrinking estimators and many other estimators used in the literature on statistical inverse
problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator
in the exact minimax sense without neither discretizing the range of tuning parameters nor split-
ting the set of observations. We also illustrate numerically the good performance achieved by the
exponentially weighted aggregate.

1. INTRODUCTION

There is a growing empirical evidence of superiority of aggregated statistical procedures, also re-
ferred to as blending, stacked generalization, or ensemble methods, with respect to “pure” ones.
Since their introduction in the 1990’s, famous aggregation procedures such as Boosting [30], Bag-

ging [9] or Random Forest [2] have been successfully used in practice for a large variety of ap-
plications. Moreover, most recent Machine Learning competitions such as Pascal VOC or Netflix
challenge have been won by procedures combining different types of classifiers / predictors / es-
timators. It is therefore of central interest to understand from a theoretical point of view what
kind of aggregation strategies should be used for getting the best possible combination of the
available statistical procedures.

1.1. Historical remarks and motivation. In the statistical literature, to the best of our knowledge,
the lecture notes of Nemirovski [48] was the first work concerned by the theoretical analysis of
aggregation procedures. It was followed by a paper by Juditsky and Nemirovski [38], as well as by
a series of papers by Catoni (see [13] for a comprehensive account) and Yang [60, 61, 62]. For the
regression model, a significant progress has been achieved by Tsybakov [58] with introducing the
notion of optimal rates of aggregation and proposing aggregation-rate-optimal procedures for the
tasks of linear, convex and model selection aggregation. This point has been further developed
by [11, 43, 46, 51], especially in the context of high dimension with sparsity constraints.

From a practical point of view, an important limitation of the previously cited results on aggrega-
tion is that they are valid under the assumption that the aggregated procedures are deterministic
(or random, but independent of the data used for the aggregation). In the Gaussian sequence
model, a breakthrough has been reached by Leung and Barron [45]. Building on very elegant
but not very well known results by George [31], they established sharp oracle inequalities for the
exponentially weighted aggregate (EWA) under the condition that the aggregated estimators are
obtained from the data vector by orthogonally projecting it on some linear subspaces. Dalalyan
and Tsybakov [21, 22] have shown that the result of [45] remains valid under more general (non
Gaussian) noise distributions and when the constituent estimators are independent of the data
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used for the aggregation. A natural question arises whether a similar result can be proved for a
larger family of constituent estimators containing projection estimators and deterministic ones
as specific examples. The main aim of the present paper is to answer this question by considering
families of affine estimators.

FIGURE 1. The effect of the smoothing matrix Aλ on the resulting estimator. In
this example, the true signal is the sine function over [−π,π] and the three ma-
trices represented in the leftmost column are some powers of one convolution
matrix. Large powers correspond to stronger smoothing. One clearly see that the
third matrix leads to an almost perfect recovery of the original signal.

Our interest in affine estimators is motivated by several reasons. First of all, affine estimators
encompass many popular estimators such as smoothing splines, the Pinsker estimator [28, 49],
local polynomial estimators, non-local means [10, 53], etc. For instance, it is known that if the
underlying (unobserved) signal belongs to a Sobolev ball, then the (linear) Pinsker estimator is
asymptotically minimax up to the optimal constant, while the best projection estimator is only
rate-minimax. A second motivation is that—as proved by Juditsky and Nemirovski [39]—the set
of signals that are well estimated by linear estimators is very rich. It contains, for instance, sam-
pled smooth functions, sampled modulated smooth functions and sampled harmonic functions.
One can add to this set the family of piecewise constant functions as well, as demonstrated in [50]
with natural application in magnetic resonance imaging. It is worth noting that oracle inequal-
ities for penalized empirical risk minimizer has also been established by Golubev [37], and for
model selection by Arlot and Bach [3], Baraud et al. [7].

In the present work, we establish sharp oracle inequalities in the statistical model of heteroscedas-
tic regression, under various conditions on the constituent estimators assumed to be affine func-
tions of the data. Our results provide theoretical guarantees of optimality, in terms of the ex-
pected loss, for the exponentially weighted aggregate. They have the advantage of covering in
a unified fashion the particular cases of frozen estimators considered by Dalalyan and Tsybakov
[22] and of projection estimators treated by Leung and Barron [45].
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We will mainly focus on the theoretical guarantees expressed in terms of oracle inequalities for
the expected squared loss. Interestingly, despite the fact that several recent papers [3, 7, 20, 35]
discuss the paradigm of competing against the best linear procedure from a given family, none
of them provide oracle inequalities with leading constant equal to one. Furthermore, most exist-
ing results involve some constants depending on different parameters of the setup. In contrast,
the oracle inequality that we prove herein is with leading constant one and admits a very simple
formulation. It is established for a (suitably symmetrized, if necessary) exponentially weighted
aggregate [13, 23, 31] with an arbitrary prior and a temperature parameter which is not too small.
The result is completely nonasymptotic and leads to asymptotically optimal residual term in the
case where the sample size, as well as the cardinality of the family of competitors, tend to in-
finity. In its general form, the residual term is similar to those obtained in PAC-Bayes setting
[42, 47, 54] in that it is proportional to the Kullback-Leibler divergence between two probability
distributions.

Note also that the problem of competing against the best procedure in a given family has been
extensively studied in the context of online learning and prediction with expert advice [18, 19,
40]. A remarkable connection between the results on online learning and the statistical oracle
inequalities has been recently established by [33].

1.2. Notation. Throughout this work, we focus on the heteroscedastic regression model with
Gaussian additive noise. More precisely, we assume that we are given a vector Y = (y1, · · · , yn)⊤ ∈
R

n obeying the model:

yi = fi +ξi , for i = 1, . . . ,n, (1.1)

where ξ = (ξ1, . . . ,ξn)⊤ is a centered Gaussian random vector, fi = f(xi ) where f is an unknown
function X →R and x1, . . . , xn ∈X are deterministic points. Here, no assumption is made on the
set X . Our objective is to recover the vector f = ( f1, . . . , fn), often referred to as signal, based on
the data y1, . . . , yn . In our work, the noise covariance matrix Σ = E[ξξ⊤] is assumed to be finite
with a known upper bound on its spectral norm. We measure the performance of an estimator
f̂ by its expected empirical quadratic loss: r = E(‖ f − f̂ ‖2

n) where ‖ f − f̂ ‖2
n = 1

n

∑n
i=1( fi − f̂i )2. We

also denote by 〈·|·〉n the corresponding empirical inner product.

Let us describe now different families of linear and affine estimators successfully used in the
statistical literature. Our results apply to all these families leading to a procedure that behaves
nearly as well as the best one of the family.

Ordinary least squares: Let {Sλ : λ ∈ Λ} be a set of linear subspaces of R
n . A well known

family of affine estimators, successfully used in the context of model selection [8], is the
set of orthogonal projections onto Sλ. In the case of a family of linear regression models
with design matrices Xλ, one has Aλ = Xλ(X ⊤

λ
Xλ)+X ⊤

λ
, where (X ⊤

λ
Xλ)+ stands for the

Moore-Penrose pseudoinverse of X ⊤
λ

Xλ.

Diagonal filters: Another set of common estimators are the so called diagonal filters f̂ =
AY , where A is a diagonal matrix A = diag(a1, . . . , an). Popular examples include:

� Ordered projections : ak = 1l(k≤λ) for some integer λ (where 1l(·) is the indicator func-
tion). Those weights are also called truncated SVD or spectral cut-off. In this case the
natural parametrization is Λ= {1, . . . ,n}, indexing the number of elements conserved.

� Block projections: ak = 1l(k≤w1) +
∑m−1

j=1 λ j 1l(w j ≤k≤w j+1), k = 1, . . . ,n, where λ j ∈ {0,1}.

Here the natural parametrization is Λ= {0,1}m−1, indexing subsets of {1,m −1}.
� Tikhonov-Philipps filter: ak = 1

1+(k/w)α , where w,α> 0. In this case, Λ= (R∗
+)2, index-

ing continuously the smoothing parameters.
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� Pinsker filter: ak =
(
1− kα

w

)
+, where x+ = max(x,0) and w,α > 0. In this case also

Λ= (R∗
+)2.

Kernel ridge regression: Assume that we have a positive definite kernel k : X ×X →R and
we aim at estimating the true function f in the associated reproducing kernel Hilbert
space (Hk ,‖·‖k ). The kernel ridge estimator is obtained by minimizing the criterion ‖Y −
f ‖2

n+λ‖ f ‖2
k

w.r.t. f ∈Hk (see [55, page 118]). Denoting by K the n×n kernel-matrix with

element Ki , j = k(xi , x j ), the unique solution f̂ is a linear estimate of the data, f̂ = AλY ,
with Aλ =K (K +nλIn×n)−1, where In×n is the identity matrix of size n ×n.

Multiple Kernel learning: As described in [3], it is also possible to handle the case of several
kernels k1, . . . ,kM , with associated positive definite matrices K1, . . . ,KM . For a parameter
λ= (λ1, . . . ,λM ) ∈Λ=R

M
+ one can define the estimators f̂ λ = AλY with

Aλ =
( M∑

m=1
λmKm

)( M∑

m=1
λmKm +nIn×n

)−1
. (1.2)

It is worth mentioning that the formulation in Eq.(1.2) can be linked to the group Lasso
[63] and to the multiple kernel introduced in [41] — see [3, 6] for more details.

Moving averages: If we think of coordinates of f as some values assigned to the vertices
of an undirected graph, satisfying the property that two nodes are connected if the corre-
sponding values of f are close, then it is natural to estimate fi by averaging out the values
Y j for indices j that are connected to i . The resulting estimator is a linear one with a ma-
trice A = (ai j )n

i , j=1 such that ai j = 1lVi
( j )/ni , where Vi is the set of neighbors of the node

i in the graph and ni is the cardinality of Vi .
Non-local means: In recent years, a signal denoising method—termed non-local means (NLM)—

has become quite popular in image processing [10]. This method removes the noise by
exploiting the signal self-similarities and has been shown to be tied in with the expo-
nentially weighted aggregate [53]. We briefly define the NLM procedure in the case of
one-dimensional signals.

Assume that a vector Y = (y1, . . . , yn) given by (1.1) is observed with fi = F (i /n), i =
1, . . . ,n, for some function F : [0,1] →R. For a fixed “patch-size” k ∈ {1, . . . ,n}, let us define
f [i ] = ( fi , fi+1, . . . , fi+k−1) and Y [i ] = (yi , yi+1, . . . , yi+k−1) for every i = 1, . . . ,n −k +1. The
vectors f [i ] and Y [i ] are respectively called true patch and noisy patch. The NLM consists
in regarding the noisy patches Y [i ] as constituent estimators for estimating the true patch
f [i0] by applying the EWA. One easily checks that the constituent estimators Y [i ] are affine
in Y [i0], that is Y [i ] = Ai Y [i0] +bi with Ai and bi independent of Y [i0]. Indeed, if the dis-
tance between i and i0 is larger than k , then Y [i ] is independent of Y [i0] and, therefore,
Ai = 0 and bi =Y [i ]. If |i − i0| < k , then the matrix Ai is a suitably chosen shift matrix and
bi is the projection of Y [i ] onto the orthogonal complement of the image of Ai .

1.3. Organization of the paper. In Section 2, we introduce EWA and state a PAC-Bayes type
bound in expectation assessing optimality properties of EWA in combining affine estimators. The
extension of these results to the case of a grouped aggregation—in relation with the ill-posed
inverse problems—is discussed in Section 3. As a consequence, we provide in Section 4 sharp
oracle inequalities in various set-ups: ranging from finite to continuous families of constituent
estimators and including the sparsity scenario. In Section 5, we apply our main results to prove
that combining Pinsker’s type filters with EWA leads to an asymptotically sharp adaptive proce-
dure over Sobolev ellipsoids. Section 6 is devoted to numerical comparison of EWA with other
classical filters (soft thresholding, blockwise shrinking, etc.), and illustrates the potential benefits
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of aggregating. Conclusion is presented in Section 7, while technical proofs are postponed to the
Appendix.

2. AGGREGATION OF ESTIMATORS: MAIN RESULTS

In this section we describe the statistical framework for aggregating estimators and we also intro-
duce the exponentially weighted aggregate. The task of aggregation consists in estimating f by a
suitable combination of the elements of a family of constituent estimators FΛ = ( f̂ λ)λ∈Λ ∈R

n . The
target objective of the aggregation is to build an aggregate f̂ aggr that mimics the performance of
the best constituent estimator, called oracle (because of its dependence on the unknown function
f). In what follows, we assume that Λ is a measurable subset of RM , for some M ∈N.

The theoretical tool commonly used for evaluating the quality of an aggregation procedure is the
oracle inequality (OI), generally written in the following form:

E‖ f̂ aggr − f ‖2
n ≤Cn inf

λ∈Λ

(
E‖ f̂ λ− f ‖2

n

)
+Rn , (2.1)

with residual term Rn tending to zero, and leading constant Cn being bounded. The OIs with
leading constant one are of central theoretical interest since they allow to bound the excess risk
and to assess the aggregation-rate-optimality.

2.1. Exponentially Weighted Aggregate (EWA). Let rλ = E(‖ f̂ λ− f ‖2
n) denote the risk of the esti-

mator f̂ λ, for any λ ∈Λ, and let r̂λ be an estimator of rλ. The precise form of r̂λ strongly depends
on the nature of the constituent estimators. For any probability distribution π over the set Λ

and for any β > 0, we define the probability measure of exponential weights, π̂, by the following
formula:

π̂(dλ) = θ(λ)π(dλ) with θ(λ) =
exp(−nr̂λ/β)∫

Λ
exp(−nr̂ω/β)π(dω)

. (2.2)

The corresponding exponentially weighted aggregate, henceforth denoted by f̂ EWA, is the expec-
tation of the f̂ λ w.r.t. the probability measure π̂:

f̂ EWA =
∫

Λ

f̂ λ π̂(dλ) . (2.3)

It is convenient and customary to use the terminology of Bayesian statistics: the measure π is
called prior, the measure π̂ is called posterior and the aggregate f̂ EWA is then the posterior mean.
The parameter β will be referred to as the temperature parameter. In the framework of aggregat-
ing statistical procedures, the use of such an aggregate can be traced back to George [31, 32].

The interpretation of the weights θ(λ) is simple: they up-weight estimators all the more that their
performance, measured in terms of the risk estimate r̂λ, is good. The temperature parameter re-
flects the confidence we have in this criterion: if the temperature is small (β≈ 0) the distribution
concentrates on the estimators achieving the smallest value for r̂λ, assigning almost zero weights
to the other estimators. On the other hand, if β→+∞ then the probability distribution over Λ is
simply the prior π, and the data do not modify our confidence in the estimators. It should also
be noted that averaging w.r.t. the posterior π̂ is not the only way of constructing an estimator of
f , some alternative estimators based on π̂ have been studied, for instance, by Audibert in [4, 5].
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2.2. Main results. In this paper, we only focus on affine estimators f̂ λ, i.e., estimators that can
be written as affine transforms of the data Y = (y1, . . . , yn)⊤ ∈ R

n . Using the convention that all
vectors are one-column matrices, affine estimators can be defined by

f̂ λ = AλY +bλ, (2.4)

where the n ×n real matrix Aλ and the vector bλ ∈ R
n are deterministic. This means that the

entries of Aλ and bλ may depend on the points x1, . . . , xn but not on the data vector Y . Let In×n

denote the identity matrix of size n×n. It is well-known (see Section A for details) that the risk of
the estimator (2.4) is given by

rλ = E[‖ f̂ λ− f ‖2
n] =‖(Aλ− In×n)f +bλ‖2

n +
Tr(AλΣAλ

⊤)

n
(2.5)

and that r̂ unb
λ

, defined by

r̂ unb
λ =‖Y − f̂ λ‖

2
n +

2

n
Tr(ΣAλ)−

1

n
Tr[Σ] (2.6)

is an unbiased estimator of rλ.

To state our main results, we denote by PΛ the set of all probability measures on Λ and by
K (p, p ′) the Kullback-Leibler divergence between two probability measures p, p ′ ∈PΛ:

K (p, p ′) =
{∫

Λ
log

( dp
dp′ (λ)

)
p(dλ) if p ≪ p ′,

+∞ otherwise.

Theorem 1. Assume that the matrices Aλ are all symmetric and satisfy AλAλ′ = Aλ′ Aλ, AλΣ+
ΣAλ º 0 and Aλ′bλ = 0 for all λ,λ′ ∈Λ. Then, the aggregate f̂ EWA defined by Equations (2.2), (2.3)

and the unbiased risk estimate r̂λ = r̂ unb
λ

(2.6) satisfies the inequality

E
(
‖ f̂ EWA − f ‖2

n

)
≤ inf

p∈PΛ

(∫

Λ

E‖ f̂ λ− f ‖2
n p(dλ)+

β

n
K (p,π)

)
(2.7)

provided that β≥ 8‖|Σ‖|, where ‖|Σ‖| stands for the spectral nor of Σ.

Remark 1. The simplest setting in which all the conditions of Theorem 1 are fulfilled is when the

matrices Aλ and Σ are all diagonal, or diagonalizable in a common base.

This theorem, as we will see in Section 5, allows us to propose a new adaptive estimator, in the ex-
act minimax sense, over the collection of all Sobolev ellipsoids. It also suggests a new method for
efficiently combining varying-block-shrinkage shrinkage estimators, as described in Section 4.4.

The result of Theorem 1 applies to the estimator f̂ EWA that uses the full knowledge of the covari-
ance matrix Σ. Indeed, even if for the choice of β only an upper bound on the spectral norm of Σ
is required, the entire matrix Σ enters in the definition of the unbiased risk r̂ unb

λ
that is used for

defining f̂ EWA. We will discuss in Section 7 some extensions of the proposed methodology to the
case of unknown Σ.

Theorem 1 gives already satisfactory answers to a certain number of questions; however, it leaves
open the issue of aggregating affine estimators defined via non-commuting matrices. For ex-
ample, the previous results do not allow us to evaluate the MSE of the EWA when each Aλ is a
convex or linear combination of a fixed family of projection matrices on non-orthogonal linear
subspaces. In order to cover such kind of situations, we develop a theory that recommends to
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use the EWA with an adjusted risk estimate:

r̂
adj
λ

=‖Y − f̂ λ‖
2
n +

2

n
Tr(ΣAλ)−

1

n
Tr[Σ]

︸ ︷︷ ︸
r̂ unb
λ

+
1

n
Y ⊤(Aλ− A2

λ)Y . (2.8)

We still assume that Aλ is symmetric and positive semidefinite, as well as that bλ ∈ Ker(Aλ) for

every λ. One can notice that the adjusted risk estimate r̂
adj
λ

coincides with the unbiased risk

estimate r̂ unb
λ

if and only if the matrix Aλ is an orthogonal projector.

Theorem 2. If the matrices Aλ are all symmetric with Aλ ¹ In×n and bλ ∈ Ker(Aλ) for every λ ∈Λ,

then the aggregate f̂ EWA defined by Equations (2.2), (2.3) and the adjusted risk estimate r̂λ = r̂
adj
λ

(2.8) satisfies the inequality

E
(
‖ f̂ EWA − f ‖2

n

)
≤ inf

p∈PΛ

{∫

Λ

E‖ f̂ λ− f ‖2
n p(dλ)+

β

n
K (p,π)

+
∫

Λ

( 1

n
f ⊤(Aλ− A2

λ)f +
1

n
Tr

[
Σ(Aλ− A2

λ)
])

p(dλ)
}

provided that β≥ 4‖|Σ‖|.

A first observation that one can make is that, in the particular case of a finite collection of pro-
jection estimators (i.e., Aλ = A2

λ
and bλ = 0 for every λ) this result reduces to [45, Corollary 6].

Furthermore, Theorem 2 handles the general noise covariances while [45] deals only with i.i.d.
Gaussian noise.

An important situation that is covered by Theorem 2 but not by Theorem 1 concerns the case
when the signals of interest f are smooth or sparse in a basis Bsig which is different from the
basis Bnoise orthogonalizing the covariance matrix Σ. In such a situation, one may be interested
in considering matrices Aλ that are diagonalizable in the basis Bsig which, in general, do not
commute with Σ.

Remark 2. We decided in this paper to focus on the case of Gaussian errors, in order to put the

emphasis on the possibility of efficiently aggregating almost any family of affine estimators with-

out spending time and space on other technical aspects. Most results stated in this section can be

generalized to other noise distributions by following the approach developed in [22].

Remark 3. An equivalent and, perhaps, more convenient way of writing the risk bound of Theo-

rem 2 is the following:

E
(
‖ f̂ EWA − f ‖2

n

)
≤ inf

p∈PΛ

{
1

n

∫

Λ

(
f ⊤(In×n − Aλ)f +Tr

[
ΣAλ

])
p(dλ)+

β

n
K (p,π)

}
.

We opted for not stating Theorem 2 in this form, in order to stress the relation between the risk of

the aggregate and those of constituent estimators.

All the results presented so far concern the situation when the matrices Aλ are symmetric. How-
ever, using the last theorem it is possible to propose an estimator that is almost as accurate as the
best affine estimator AλY +bλ even if the matrices Aλ are not symmetric. Interestingly, the esti-
mator enjoying this property is not obtained by aggregating the original estimators f̂ λ = AλY +bλ

but the “symmetrized” estimators f̃ λ = ÃλY +bλ where Ãλ = Aλ+ Aλ
⊤− Aλ

⊤Aλ. Besides symme-
try, an advantage of the matrices Ãλ, as compared to the matrices Aλ, is that they automatically
satisfy the contraction condition Ãλ ¹ In×n required by Theorem 2.
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Corollary 1. Let {Aλ : λ ∈ Λ} be any family of n ×n matrices and {bλ : λ ∈ Λ} be a set of vectors

of R
n satisfying Aλbλ = Aλ

⊤bλ = 0 for every λ ∈ Λ. Assume in addition that Λ is equiped with

a σ-algebra so that the mapping λ 7→ (Aλ,bλ) is measurable. Let f̃ EWA denote the exponentially

weighted aggregate of estimators f̃ λ = (Aλ+ Aλ
⊤− Aλ

⊤Aλ)Y +bλ with the weights (2.2) defined via

the risk estimate r̂ unb
λ

. Then, for every β≥ 4‖|Σ‖|, it holds that

E
[
‖f̃ EWA − f ‖2

n

]
≤ inf

p∈PΛ

{∫

Λ

E
[
‖ f̂ λ− f ‖2

n

]
p(dλ)+

β

n
K (p,π)

}
+
β

n
log

[∫

Λ

e
2
β

Tr[Σ(Aλ−Aλ
⊤Aλ)]

π(dλ)
]

.

The proof of this corollary is very simple: it consists in applying Theorem 2 to the affine estima-

tors f̃ λ with the prior π(dλ) replaced by e
2
β

Tr[Σ(Aλ−Aλ
⊤Aλ)]

π(dλ)/
∫
Λ

e
2
β

Tr[Σ(Aw−A⊤
w Aw )]

π(d w ).

Remark 4. It follows from Corollary 1 that

E
[
‖f̃ EWA − f ‖2

n

]
≤ inf

p∈PΛ

{∫

Λ

E
[
‖ f̂ λ− f ‖2

n

]
p(dλ)+

β

n
K (p,π)

}
(2.9)

not only when the prior π is supported by the set of projection matrices, but under more general

condition

(C) π
{
λ∈Λ : Tr(ΣAλ) ≤ Tr(ΣAλ

⊤Aλ)
}
= 1.

If the matrix Σ is diagonal, a notable example of linear estimators that satisfy this condition

are Nadaraya-Watson estimators with rectangular kernel, also called moving averages or nearest

neighbor filters (in the case of a regularly spaced design). Below is a visual illustration of a matrix

defining a moving average estimator:

0.1

0.2

0.3

0.4

Under a little bit more stringent assumption of homoscedasticity, i.e., when Σ=σ2In×n , if the ma-

trices Aλ are such that all the non-zero elements of each row are equal and sum up to one (or a

quantity larger than one) then Tr(Aλ) ≤ Tr(Aλ
⊤Aλ) and (C) is fulfilled.

Another class of matrices for which (C) holds true are those having only zeros on the main diago-

nal.

3. ILL-POSED INVERSE PROBLEMS AND GROUP-WEIGHTING

As explained in [14, 17], the model of heteroscedastic regression is well suited for describing in-
verse problems. In fact, let T be a known linear operator on some Hilbert space H , equipped
with an inner product 〈·|·〉H . For some h ∈ H , let Y be the random process indexed by g ∈ H

such that
Y =T h +εξ ⇐⇒

(
Y (g ) =

〈
T h|g

〉
H

+εξ(g ), ∀g ∈H

)
, (3.1)

where ε> 0 is the noise magnitude and ξ is the white Gaussian noise on H , i.e., for any g1, . . . , gk ∈
H the vector

(
Y (g1), . . . ,Y (gk )

)
is Gaussian with zero mean and covariance matrix {〈gi |g j 〉H }.
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Input:: data vector Y ∈ R
n , n ×n noise covariance matrix Σ and a family of linear

smoothers
{

f̂ λ = AλY ;λ ∈Λ
}
.

Output:: estimator f̃ EWA of the true function f .

Parameter:: prior probability distribution π on Λ, temperature parameter β> 0.

Strategy::

(1) For every λ, compute the risk estimate r̂ unb
λ

= ‖Y − f̂ λ‖
2
n + 2

n Tr(ΣAλ)− 1
n Tr[Σ].

(2) Define the prob. distribution π̂(dλ) = θ(λ)π(dλ) with θ(λ) ∝ exp(−nr̂ unb
λ

/β).

(3) For every λ, build the symmetrized linear smoothers f̃ λ = (Aλ+ Aλ
⊤− Aλ

⊤Aλ)Y .
(4) Average out the symmetrized smoothers w.r.t. posterior π̂: f̃ EWA =

∫
Λ

f̃ λπ̂(dλ).

FIGURE 2. The symmetrized exponentially weighted aggregation strategy for
competing against the best linear smoother in a given family.

The statistical problem is then the following: estimate the element h assuming that the value of
Y for any given g can be measured.

It is customary to use as “probe elements” g the eigenvectors of the adjoint of T , denoted by T ∗.
Suppose that the operator T ∗ T is compact, then one has the singular value decomposition

Tφk = bkψk , T ∗ψk = bkφk , k ∈N, (3.2)

where bk are the singular values, {ψk } is an orthonormal basis in Range(T ) ⊂ H and {φk } is the
corresponding orthonormal basis in H . In view of (3.1), it holds that:

Y (ψk ) =
〈

h|φk

〉
H

bk +εξ(ψk ), k ∈N. (3.3)

Since in practice only a finite number of measurements can be computed, it is natural to as-
sume that the values Y (ψk ) are available only for k smaller than some integer n. Under the
assumption that bk 6= 0 the last equation is equivalent to (1.1) with the choice fi =

〈
h|φi

〉
H

and
Σ= diag(σ2

i
, i = 1, · · · ) where σi = εb−1

i
. Important examples of inverse problems to which this sta-

tistical model has been successfully applied are derivative estimation, deconvolution with known
kernel, computerized tomography—see [14] and the references therein for more applications.

For very mildly ill-posed inverse problems, i.e., when the singular values bk of the operator T

decrease to zero not faster than any negative power of k , the approach presented in previous
section will lead to satisfactory results. Indeed, choosing β = 8‖|Σ‖| or β = 4‖|Σ‖|, the remainder
term in (2.7) and (2.9) becomes—up to a logarithmic factor—proportional to max1≤k≤n b−2

k
/n,

which is the optimal rate in the case of very mild ill-posedness.

However, even for mildly ill-posed inverse problems, the approach developped in previous sec-
tion becomes obsolete since the remainder blows up when n increases to infinity. Furthermore,
this is not an artefact of our theoretical results, but is a drawback of the aggregation strategy
adopted in the previous section. Indeed, the posterior probability measure π̂ defined by (2.2) can
be seen as the solution of the entropy-penalized empirical risk minimization problem:

π̂n = arginf
p

{∫

Λ

r̂λ p(dλ)+
β

n
K (p,π)

}
, (3.4)

where the inf is taken over the set of all probability distributions. This means that the same reg-
ularization parameter β is employed for estimating both the coefficients fi =

〈
h|φi

〉
H

corrupted
by noise of small magnitude and those corrupted by large noise. Since we place ourselves in the
setting of known operator T and, therefore, known noise levels, such a uniform treatment of all
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coefficients fi is not reasonable. It is more natural to upweight the regularization term in the case
of large noise downweighting the data fidelity term and, conversely, to downweight the regular-
ization in the case of small noise upweighting the data fidelity term. This observation leads us to
the grouped version of the exponentially weighted aggregate.

Let us consider a partition B1, . . . ,Bm of the set {1, . . . ,n}: B j = {T j +1, . . . ,T j+1}, for some integers
0 = T1 <T2 < . . . < Tm+1 = n. To each element B j of this partition, we associate the data sub-vector

Y j = (Yi : i ∈ B j ) and the sub-vector of true function f j = ( fi : i ∈ B j ). As in previous section, we

are concerned by the aggregation of affine estimators f̂ λ = AλY +bλ but we will assume here that
the matrices Aλ are block-diagonal:

Aλ =





A1
λ

0 . . . 0
0 A2

λ
. . . 0

...
...

. . .
...

0 0 . . . Am
λ



 , with A
j

λ
∈R

(T j+1−T j )×(T j+1−T j ).

Similarly, we define f̂
j

λ and b
j

λ
as the subvectors of f̂ λ and bλ, respectively, corresponding to the

indices belonging to B j . We will also assume that the noise covariance matrix Σ is block-diagonal

with (T j+1 −T j )× (T j+1 −T j ) blocks Σ
j . These notation imply in particular that f̂

j

λ = A
j

λ
Y j +b

j

λ

for every j = 1, . . . ,m. Moreover, the unbiased risk estimate r̂ unb
λ

of f̂ λ can be decomposed into

the sum of unbiased risk estimates r̂
j ,unb
λ

of f̂
j

λ; namely r̂ unb
λ

=
∑m

j=1 r̂
j ,unb
λ

, where

r̂
j ,unb
λ

= ‖Y j − f̂
j

λ‖+
2

n
Tr(Σ j A

j

λ
)−

1

n
Tr[Σ j ], j = 1, . . . ,m.

To state the analogues of Theorem 1 and Remark 4 we introduce the following two settings.

Setting 1:: All the matrices A
j

λ
are symmetric and satisfy A

j

λ
A

j

λ′ = A
j

λ′ A
j

λ
, A

j

λ
Σ

j +Σ
j A

j

λ
º 0

and A
j

λ′b
j

λ
= 0 for all λ,λ′ ∈ Λ and for all j ∈ {1, . . . ,m}. For a vector of temperature pa-

rameters β= (β1, . . . ,βm)⊤ and for a prior π, we define the group exponentially weighted

aggregate (GEWA) as f̂
j

GEWA =
∫
Λ

f̂
j

λπ̂
j (dλ), where

π̂ j (dλ) = θ j (λ)π(dλ) with θ j (λ) =
exp(−nr̂

j ,unb
λ

/β j )
∫
Λ

exp(−nr̂
j ,unb
ω /β j )π(dω)

. (3.5)

Setting 2:: For every j = 1, . . . ,m and for every λ belonging to a set of π-measure one, the

matrices Aλ satisfy the inequality Tr(Σ j A
j

λ
) ≤Tr(Σ j (A

j

λ
)⊤A

j

λ
) while the vectors bλ are such

that A
j

λ
b

j

λ
= (A

j

λ
)⊤b

j

λ
= 0. In this case, for a vector of temperature parameters β= (β1, . . . ,βm)⊤

and for a prior π, we define the group exponentially weighted aggregate (GEWA) as f̂
j

GEWA =∫
Λ

f̃ λ
j
π̂ j (dλ), where f̃ λ

j = (A
j

λ
+ (A

j

λ
)⊤− (A

j

λ
)⊤A

j

λ
)Y j +b

j

λ
and π̂ j is defined by (3.5).

Theorem 3. Under Setting 1, if β j ≥ 8‖|Σ j‖| for every j = 1, . . . ,m, then

E
(
‖ f̂ GEWA − f ‖2

n

)
≤

m∑

j=1
inf

p j ∈PΛ

(∫

Λ

E‖ f̂
j

λ− f j‖2
n p j (dλ)+

β j

n
K (p j ,π)

)
. (3.6)

Furthermore, the same inequality holds true under Setting 2 provided that β j ≥ 4‖|Σ j‖| for every

j = 1, . . . ,m.

As we shall see it in Section 5, this theorem allows us to propose an estimator of the unknown
signal which is adaptive w.r.t. the smoothness properties of the underlying signal and achieves
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the minimax rates and constants over the Sobolev ellipsoids provided the operator T is mildly
ill-posed, i.e., its singular values decrease at most polynomially.

4. EXAMPLES OF SHARP ORACLE INEQUALITIES

In this section, we discuss consequences of the main result for specific choices of prior measures.
For coveying the main messages of this section it is enough to focus on the Settings 1 and 2 in
the case of only one group (m = 1). In this situation, the estimators f̂ EWA and f̂ GEWA coincide.

4.1. Discrete oracle inequality. In order to demonstrate that Inequality (3.6) can be reformulated
in terms of an OI as defined by (2.1), let us consider the case when the prior π is discrete. That is,
we assume that π(Λ0) = 1 for a countable set Λ0 ⊂Λ. Without loss of generality, we assume that
Λ0 =N. Then, the following result holds true.

Proposition 1. Under Setting 1 with m = 1 and β = β1 if π is supported by N, then the aggregate

f̂ GEWA satisfies the inequality

E(‖ f̂ GEWA − f ‖2
n)≤ inf

ℓ∈N:πℓ>0

(
E‖ f̂ℓ− f ‖2

n +
β log(1/πℓ)

n

)
(4.1)

provided that β≥ 8‖|Σ‖|. Furthermore, the same inequality holds true under Setting 2 provided that

β≥ 4‖|Σ‖|.

Proof. It suffices to apply Theorem 1 and to bound the RHS from above by the minimum over all
Dirac measures p =δℓ with ℓ such that πℓ > 0. �

This inequality can be compared to Corollary 2 in [7, Section 4.3]. Our inequality has the advan-
tage of having factor one both in front of the expectation of the LHS of (4.1) and in front of the inf
of the RHS. It should be noted, however, that we consider the noise covariance matrix as known,
whereas [7] estimates the noise covariance along with the regression function.

4.2. Continuous oracle inequality. It may be useful in practice to combine a family of affine
estimators indexed by an open subset of RM , for some integer M > 0, for instance when the aim
is to build an estimator that is nearly as accurate as the best kernel estimator with fixed kernel
and varying bandwidth. In order to state an oracle inequality in such a “continuous” setup, let us
denote by d2(λ,Λ) the largest real τ> 0 such that the ball centered at λ with radius τ is included
in Λ. In what follows, Leb(·) stands for the Lebesgue measure.

Proposition 2. Let Λ⊂R
M be an open and bounded set and let π be the uniform probability on Λ.

Assume that the mapping λ 7→ rλ is Lipschitz continuous, i.e., |rλ′ − rλ| ≤ Lr‖λ′−λ‖2, ∀λ,λ′ ∈Λ.

Under Setting 1 with m = 1 and β=β1 ≥ 8‖|Σ‖| the aggregate f̂ GEWA satisfies the inequality

E‖ f̂ EWA − f ‖2
n ≤inf

λ∈Λ

{
E‖ f̂ λ− f ‖2

n +
βM

n
log

( p
M

2min(n−1,d2(λ,Λ))

)}
+

Lr +β log
(
Leb(Λ)

)

n
. (4.2)

Furthermore, the same inequality holds true under Setting 2 for every β≥ 4‖|Σ‖|.

Proof. Let us denote by Bλ(τ) the Euclidean ball in R
M with radius τ > 0 and centered at λ ∈

R
M . It suffices to apply Theorem 1 and to bound the RHS in Inequality (2.7) from above by the

minimum over all measures having as density pλ0,τ0 (λ) = 1lBλ0 (τ0)(λ)/Leb(Bλ0 (τ0)). For a choice

λ0 = min(n−1,d2(λ,Λ)) such that Bλ0 (τ0) ⊂ Λ, the measure pλ0,τ0 (λ)dλ is absolutely continu-
ous w.r.t. the uniform prior π and the Kullback-Leibler divergence between these two measures
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equals log
{

Leb(Λ)/Leb
(
Bλ0 (τ0)

)}
. Using the obvious inequality Leb

(
Bλ0 (τ0)

)
≥ ( 2τ0p

M
)M and the

Lipschitz condition, we get the desired inequality. �

Note that it is not very stringent to require that the risk function rλ is Lipschitz continuous, es-
pecially that this condition needs not be satisfied uniformly in f . As an example, let us con-
sider the ridge regression: for a given design matrix X ∈ R

n×p , Aλ = X (X ⊤X +γnλIn×n)−1 X ⊤

with λ ∈ [λ∗,λ∗], where γn is a given normalization factor typically set to n or
p

n, λ∗ > 0 and
λ∗ ∈ [λ∗,∞]. One easily checks that the Lipschitz continuity of the risk function is satisfied with
Lr = Lr ( f )= 4λ−1

∗ ‖ f ‖2
n +2Tr(Σ/n).

4.3. Sparsity oracle inequality. The continuous oracle inequality stated in previous subsection
is well adapted to the case where the dimension M of Λ is small compared to the sample size
n (or, more precisely, the signal to noise ratio n/‖|Σ‖|). If this is not the case, the choice of the
prior should be done more carefully. For instance, consider the case of a set Λ ⊂ R

M with large
M under the sparsity scenario: there is a sparse vector λ∗ ∈Λ such that the risk of f̂ λ∗ is small.
Then, it is natural to choose a prior π that promotes the sparsity of λ. This can be done in the
same vein as in [21, 22], by means of the heavy tailed prior:

π(dλ) ∝
M∏

j=1

1

(1+|λ j /τ|2)2
1lΛ(λ), (4.3)

where τ> 0 is a tuning parameter.

Proposition 3. Let Λ = R
M and let π be defined by (4.3). Assume that the mapping λ 7→ rλ is

continuously differentiable and, for some M ×M matrix M , satisfies:

rλ− rλ′ −∇r⊤
λ′(λ−λ′)≤ (λ−λ′)⊤M (λ−λ′), ∀λ,λ′ ∈Λ. (4.4)

Under Setting 1 if β≥ 8‖|Σ‖|, then the aggregate f̂ EWA = f̂ GEWA satisfies the inequality

E
(
‖ f̂ EWA − f ‖2

n

)
≤ inf

λ∈RM

{
E‖ f̂ λ− f ‖2

n +
4β

n

M∑

j=1
log

(
1+

|λ j |
τ

)}
+Tr(M )τ2. (4.5)

Moreover, the same inequality holds true under Setting 2 provided that β≥ 4‖|Σ‖|.

Let us discuss here some consequences of this sparsity oracle inequality. First of all, let us re-
mark that in most cases—see, for instance, [22, 23] in the case of frozen estimators—Tr(M ) is
on the order of M and the choice τ=

√
β/(nM ) ensures that the last term in the RHS of Eq. (4.5)

decreases at the parametric rate 1/n. This is the choice we recommend for practical applications.

Assume now that we are given a large number of linear estimators ĝ 1 =G1Y , . . . , ĝ M =GM Y sat-
isfying, for instance, conditions of Setting 1. We will focus on matrices G j having a spectral norm
bounded by one (it is well known that the failure of this condition makes the linear estimator
inadmissible). Assume furthermore that our aim is to propose an estimator that mimics the be-
havior of the best possible convex combination of a pair of estimators chosen among ĝ 1, . . . , ĝ M .
This task can be accomplished in the framework of the present paper by setting Λ = R

M and
f̂ λ = λ1ĝ 1 + . . .λM ĝ M , where λ = (λ1, . . . ,λM ). If {ĝ i } satisfy conditions of Setting 1, then it is
also the case for { f̂ λ}. Moreover, the mapping λ 7→ rλ is quadratic with the Hessian matrix ∇2rλ
given by the entries 2〈G j f |G j ′ f 〉n+ 2

n
Tr(G j ′ΣG j ), j , j ′ = 1, . . . , M . This implies that Inequality (4.4)

holds with M being the Hessian divided by 2. Therefore, denoting by σ2
i

the i th diagonal entry of

Σ and setting σ= (σ1, . . . ,σn), we get Tr(M ) ≤ ‖|
∑M

j=1 G2
j
‖|(‖ f ‖2

n +‖σ‖2
n) ≤ M (‖ f ‖2

n +‖σ‖2
n), where
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the norm of a matrix is understood as its largest singular value. Applying Proposition 3 with
τ=

√
β/(nM ), we get

E‖ f̂ EWA − f ‖2
n ≤ inf

α, j , j ′
E‖αĝ j + (1−α)ĝ j ′ − f ‖2

n

+
8β

n
log

(
1+

Mn

β

)
+
β

n
(‖ f ‖2

n +‖σ‖2
n), (4.6)

where the inf is taken over all α ∈ [0,1] and j , j ′ ∈ {1, . . . , M }. We restrict our choice to λ having
at most two non-zero coefficients, λi0 and λ j0 , that are non-negative and sum to one: λi0 +λ j0 =
1. Then, the summation in the RHS of inequality (4.5) has simply two terms controlled by the
following inequality

log
(
1+λi0τ

−1)+ log
(
1+λ j0τ

−1)≤ 2log
(
1+τ−1) . (4.7)

In practice, τ2 =β/(Mn) < 1 so log
(
1+τ−1

)
≤ log

(
1+τ−2

)
and Inequality (4.6) holds true.

This shows that, using the EWA, one can achieve the best possible risk over the convex combi-
nations of a pair of linear estimators—selected from a large (but finite) family—at the price of a
residual term that decreases at the parametric rate up to a log factor.

4.4. Oracle inequalities for varying-block-shrinkage estimators. Let us consider now the prob-
lem of aggregation of two-block shrinkage estimators. It means that the constituent estima-
tors have the following form: for λ = (a,b,k) ∈ [0,1]2 × {1, . . . ,n} := Λ, f̂ λ = AλY where Aλ =
diag

(
a1l(i ≤ k)+b1l(i > k), i = 1, · · · ,n

)
. Let us choose the prior π as the uniform probability dis-

tribution on the set Λ.

Proposition 4. Let f̂ EWA be the exponentially weighted aggregate having as constituent estimators

two-block shrinkage estimators AλY . If Σ is a diagonal matrix, then for any λ ∈ Λ and for any

β≥ 8‖|Σ‖|,

E(‖ f̂ EWA − f ‖2
n) ≤ E(‖ f̂λ− f ‖2

n)+
β

n

{
1+ log

(n2‖ f ‖2
n +n Tr(Σ)

12β

)}
. (4.8)

In the case Σ = In×n , this result is comparable to [44, page 20, Theorem 2.49], which states that
in the model of homoscedastic regression (Σ= In×n), the EWA acting on two-block positive-part
James-Stein shrinkage estimators satisfies, for any k = 3, · · · ,n − 3, and for β = 8, the oracle in-
equality

E(‖ f̂ Leung − f ‖2
n) ≤ E(‖ f̂λ− f ‖2

n)+
9

n
+

8

n
min
K>0

{
K ∨

(
log

n −6

K
−1

)}
. (4.9)

5. APPLICATION TO MINIMAX ADAPTIVE ESTIMATION

In the celebrated paper [49], Pinsker proved that in the model (1.1) the minimax risk over el-
lipsoids can be asymptotically attained by a linear estimator. Let us denote by θk (f ) = 〈 f |ϕk〉n

the coefficients of the (orthogonal) discrete cosine1 transform of f , hereafter denoted by Df .
Pinsker’s result—restricted to Sobolev ellipsoids FD(α,R) =

{
f ∈R

n :
∑n

k=1 k2αθk (f )2 ≤ R
}

—states

1The results of this section hold true not only for the discrete sine transform, but for any linear transform D such
that DD

⊤ =D
⊤

D = n−1 In×n .
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that, as n →∞, the equivalences

inf
f̂

sup
f ∈FD (α,R)

E
(
‖ f̂ − f ‖2

n

)
∼ inf

A
sup

f ∈FD (α,R)
E
(
‖AY − f ‖2

n

)
(5.1)

∼ inf
w>0

sup
f ∈FD (α,R)

E
(
‖Aα,w Y − f ‖2

n

)
(5.2)

hold [59, Theorem 3.2], where the first inf is taken over all possible estimators f̂ and Aα,w =
D

⊤diag
(
(1 − kα/w )+;k = 1, . . . ,n

)
D is the Pinsker filter in the discrete cosine basis. In simple

words, this implies that the (asymptotically) minimax estimator can be chosen from the quite
narrow class of linear estimators with Pinsker’s filter. However, it should be emphasized that the
minimax linear estimator depends on the parameters α and R , that are generally unknown. An
(adaptive) estimator, that does not depend on (α,R) and is asymptotically minimax over a large
scale of Sobolev ellipsoids has been proposed by Efromovich and Pinsker [27]. The next result,
that is a direct consequence of Theorem 1, shows that the EWA with linear constituent estimators
is also asymptotically sharp adaptive over Sobolev ellipsoids.

Proposition 5. Let λ= (α, w )∈Λ=R
2
+ and consider the prior

π(dλ) =
2n−α/(2α+1)

σ(
1+n−α/(2α+1)

σ w
)3

e−αdαd w, (5.3)

where nσ = n/σ2. Then, in model (1.1) with homoscedastic errors, the aggregate f̂ EWA based on the

temperature β = 8σ2 and the constituent estimators f̂ α,w = Aα,w Y (with Aα,w being the Pinsker

filter) is adaptive in the exact minimax sense2 on the family of classes {FD (α,R) : α> 0,R > 0}.

It is worth noting that the exact minimax adaptivity property of our estimator f̂ EWA is achieved
without any tuning parameter. All previously proposed methods that are provably adaptive in
exact minimax sense depend on some parameters such as the lengths of blocks for blockwise
Stein [16] and Efromovich-Pinsker [28] estimators or the step of discretization and the maximal
value of bandwidth [17]. Another nice property of the estimator f̂ EWA is that it does not require
any pilot estimator based on the data splitting device [29, 62].

We now turn to the setup of heteroscedastic regression, which corresponds to ill-posed inverse
problems as described in Section 3. To achieve adaptivity in the exact minimax sense, we make
use of f̂ GEWA, the grouped version of the exponentially weighted aggregate. We assume hereafter
that the matrix Σ is diagonal with diagonal entries σ1, . . . ,σn satisfying the following property:

∃σ∗,γ> 0 such that σ2
k =σ2

∗k2γ(1+ok (1)) as k →∞. (5.4)

This kind of problems arise when T is a differential operator or the Radon transform [14, Section
1.3]. To handle such a situation, we define the groups in the same spirit as the weakly geomet-
rically increasing blocks in [15]. Let ν = νn be a positive integer that increases as n → ∞. Set
ρn =ν−1/3

n and define

T j =
{

(1+νn) j−1 −1, j = 1,2,

T j−1+⌊νnρn(1+ρn) j−2⌋, j = 3,4, . . . ,
(5.5)

where ⌊x⌋ stands for the largest integer strictly smaller than x. Let m be the smallest integer j

such that T j ≥ n. We redefine Tm+1 = n and set B j = {T j +1, . . . ,T j+1} for all j = 1, . . . ,m.

2see [59, Definition 3.8]
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Proposition 6. Let the groups B1, . . . ,Bm be defined as above with νn satisfying logνn/log n →∞
and νn →∞ as n →∞. Let λ= (α, w ) ∈Λ=R

2
+ and consider the prior

π(dλ)=
2n−α/(2α+2γ+1)

(
1+n−α/(2α+2γ+1)w

)3
e−αdαd w. (5.6)

Then, in model (1.1) with diagonal covariance matrix Σ= diag(σk ;1 ≤ k ≤ n) satisfying condition

(5.4), the aggregate f̂ GEWA based on the temperatures β j = 8maxi∈B j
σ2

i
and the constituent estima-

tors f̂ α,w = Aα,w Y (with Aα,w being the Pinsker filter) is adaptive in the exact minimax sense on

the family of classes {F (α,R) : α> 0,R > 0}.

Note that this result provides an estimator which atteins the optimal constant in the minimax
sense when the unknown signal lies in an ellipsoid. This property is possible because of the fact
that the minimax estimators over the ellipsoids are linear. For other type of subsets of Rn , such
as hyper-rectangles, Besov bodies and so on, this is not true anymore. However, as proved by
Donoho et al. [26], for orthosymmetric quadratically convex sets the minimax linear estimators
have a risk which is within 25% of the minimax risk among all estimates. Therefore, following the
approach developed here for the set of ellipsoids, it is also possible to prove that the aggregate
GEWA can lead to an adaptive estimator whose risk is within a factor 5/4 of the minimax risk, for
example, for a broad class of hyperrectangles.

6. EXPERIMENTS

In this section we present some numerical experiments on synthetic data, by focusing only on
the case of homoscedastic Gaussian noise (Σ=σ2In×n) with known variance. Following the phi-
losophy of reproducible research, a toolbox is made available freely for download at the address
http://imagine.enpc.fr/~dalalyan/AffineAggr.html.

We evaluate different estimation routines on several 1D signals, introduced by Donoho and John-
stone [24, 25] and considered as a benchmark in the literature on signal processing. The six sig-
nals we retained for our experiments because of their diversity are depicted in Figure 3. Since all
these signals are nonsmooth, we have also carried out experiments on their smoothed versions
obtained by taking the antiderivative, see Figure 3. In what follows, the experiment on non-
smooth signals will be referred to as Experiment I, whereas the experiment on their smoothed
counterparts will be referred to as Experiment II. In both cases, prior to applying estimation rou-
tines, we normalize the (true) sampled signal to have an empirical norm equal to one and use

the Discrete Cosine Transform (DCT) denoted by θ(Y ) =
(
θ1(Y ), . . . ,θn(Y )

)⊤.

The four estimation routines—including the EWA—used in our experiments are detailed below:

Soft-Thresholding (ST) [24]:: For a given shrinkage parameter t , the Soft-Thresholding es-
timator of the vector of DCT coefficients θk (f ) is defined by

θ̂k = sgn
(
θk (Y )

)(
|θk (Y )|−σt

)
+ . (6.1)

In our experiments, we use the threshold minimizing the estimated unbiased risk defined
via Stein’s lemma. This procedure is referred to as SURE-shrink [25].

Blockwise James-Stein (BJS) shrinkage [12]:: The set of indices {1, · · · ,n} is partitioned into
N = [n/log(n)] non-overlapping blocks B1,B2, · · ·BN of equal size L. (If n is not a multiple
of N , the last block may be of smaller size than all the others.) The corresponding blocks
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(a) Test signals in Experiment I (b) Test signals in Experiment II

FIGURE 3. Test signals used in our experiments: Piece-Regular, Ramp, Piece-
Polynomial, HeaviSine, Doppler and Blocks. (a) non-smooth (Experiment I) and
(b) smooth (Experiment II).

of true coefficients θBk
(f )=

(
θ j (f )

)
j∈Bk

are then estimated by:

θ̂Bk
=

(

1−
λLσ2

S2
k

(Y )

)

+
θBk

(Y ), k = 1, · · · , N (6.2)

where θBk
(Y ) are the blocks of noisy coefficients, S2

k
= ‖θBk

(Y )‖2
2 and λ= 4.50524 as sug-

gested in [12].
Unbiased risk estimate (URE) minimization [17, 36] with Pinsker’s filters:: This method con-

sists in using a Pinsker filter, as defined in Section 5 above, with a data-driven choice of
parameters α and w . This choice is done by minimizing an unbiased estimate of the risk
over a suitably chosen grid for the values of α and w . Here, we use geometric grids rang-
ing from 0.1 to 100 for α and from 1 to n for w . Thus, the bi-dimensional grid used in all
the experiments has 100×100 elements. We refer to [17] for the closed-form formula of
the unbiased risk estimator and further details.

EWA on Pinsker’s filters:: We consider the same finite family of linear smoothers—defined
by Pinsker’s filters—as in the URE routine described above. According to Proposition 1,
this leads to an estimator which is nearly as accurate as the best Pinsker’s estimator in the
given finite family.

To report the result of our experiments, we have also computed the best linear smoother based
on a Pinsker filter chosen among the candidates that we used for defining the URE and the EWA
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routines. By best smoother we mean the one minimizing the squared error, which can be com-
puted since we know the ground truth. This pseudo-estimator will be referred to as oracle. The
results summarized in Table 1 for Experiment I and Table 2 for Experiment II correspond to the
average over 1000 trials of the mean squared error (MSE) from which we subtract the MSE of the
oracle and multiply the resulting difference by the sample size. We report the results for σ= 0.33
and for n ∈ {28,29,210,211}.

Simulations show that EWA and URE have very comparable performances and are significantly
more accurate than Soft-Thresholding and Block James-Stein (see Table 1) for every size n of
signals considered. The improvement is particularly important when the signal has large peaks
(cf. Figure 4) or discontinuities (cf. Figure 5). In most cases, the EWA method also outperforms
the URE, but this difference is much less pronounced. One can also observe that in the case of
smooth signals, the difference of the MSEs between the EWA and the oracle, multiplied by n,
remains nearly constant when n varies. This is in perfect agreement with our theoretical results
in which the residual term decreases to zero inversely proportionally to the sample size.

Of course, Soft-Thresholding and blockwise James-Stein procedures have been designed for be-
ing applied to the wavelet transform of a Besov smooth function, rather than to the Fourier trans-
form of a Sobolev-smooth function. However, the point here is not to demonstrate the superi-
ority of the EWA as compared to ST and BJS procedures. The point is to stress the importance
of having sharp adaptivity up to optimal constant and not simply adaptivity in the sense of rate
of convergence. Indeed, the procedures ST and BJS are provably rate-adaptive when applied to
Fourier transform of a Sobolev-smooth function, but they are not sharp adaptive—they do not
attain the optimal constant—whereas the EWA and URE procedures do attain.

7. SUMMARY AND FUTURE WORK

In this paper, we have addressed the problem of aggregating a set of affine estimators in the con-
text of regression with fixed design and heteroscedastic noise. Under some assumptions on the
constituent estimators, we have proven that the EWA with a suitably chosen temperature param-
eter satisfies PAC-Bayesian type inequality, from which different types of oracle inequalities have
been deduced. All these inequalities are with leading constant one and with rate-optimal resid-
ual term. As a by-product of our results, we have shown that the EWA applied to the family of
Pinsker’s estimators produces an estimator, which is adaptive in the exact minimax sense.

Although only the case of known covariance matrix is considered in the present work, the results
are easy to extend for handling the more realistic situation where an unbiased estimate Σ̂, inde-
pendent of Y , of the covariance matrix Σ is available. One should merely replace Σ by Σ̂ in the
definition of the unbiased risk estimate (2.6) and leave the remaining steps unchanged. For ex-
ample, when the matrices Aλ satisfy condition (C), the claim of Remark 4 remains valid and can
be proved along the lines of Appendix A.

Next in our agenda is carrying out an experimental evaluation of the proposed aggregate using
the approximation schemes described by Dalalyan and Tsybakov [23], Rigollet and Tsybakov [52]
and Alquier and Lounici [1], with a special focus on the problems involving large scale data. It will
also be interesting to extend the results of this work to the case of the unknown noise variance in
the same vein as in Giraud [34].
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FIGURE 4. This figure presents the results of signal denoising for function Heav-
isine. The first row is the true signal (left) and a noisy version of it (right), where
the noise is white Gaussian with standard deviation σ = 0.33. The second row
presents the denoised signals obtained by EWA (left) and by BJS, ST and URE
(right)

APPENDIX A. PROOFS OF MAIN THEOREMS

In this section we give the detailed proofs of the results stated in the manuscript.

A.1. Stein’s lemma. The proof of our main results rely on the well-known Stein lemma [56, 57]
providing an unbiased risk estimate for any estimator that depends sufficiently smoothly on the
data vector Y . For the convenience of the reader, we recall Stein’s lemma in the case of het-
eroscedastic Gaussian regression.

Lemma 1. Let Y be random vector drawn form the Gaussian distribution Nn(f ,Σ). If the esti-

mator f̂ is a.e. differentiable in Y and the elements of the matrix ∇ · f̂
⊤

:= (∂i f̂ j ) have finite first

moment, then

r̂ = ‖Y − f̂ ‖2
n +

2

n
Tr[Σ(∇· f̂

⊤
)]−

1

n
Tr[Σ],

is an unbiased estimate of r , i.e., Er̂ = r .

The proof can be found in [59, p.157]. We apply Stein’s lemma to affine estimators f̂ λ = AλY +bλ,
where Aλ is an n ×n deterministic real matrix and bλ ∈R

n is a deterministic vector. We get that

r̂ unb
λ = ‖Y − f̂ λ‖

2
n +

2

n
Tr[ΣAλ]−

1

n
Tr[Σ]

is an unbiased estimator of the risk

rλ = E[‖ f̂ λ− f ‖2
n] = ‖(Aλ− In×n)f +bλ‖2

n +
1

n
Tr[AλΣA⊤

λ ].
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n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler

256 0.051 0.245 9.617 4.846 0.062 0.212 13.233 6.036
(0.42) (0.39) (1.78) (1.29) (0.35) (0.31) (2.11) (1.23)

512 -0.052 0.302 13.807 9.256 -0.100 0.205 17.080 12.620
(0.35) (0.50) (2.16) (1.70) (0.30) (0.39) (2.29) (1.75)

1024 -0.050 0.299 19.984 17.569 -0.107 0.270 21.862 23.006
(0.36) (0.46) (2.68) (2.17) (0.35) (0.41) (2.92) (2.35)

2048 -0.007 0.362 28.948 30.447 -0.150 0.234 28.733 38.671
(0.42) (0.57) (3.31) (2.96) (0.34) (0.42) (3.19) (3.02)

HeaviSine Piece-Regular

256 -0.060 0.247 1.155 3.966 -0.069 0.248 8.883 4.879
(0.19) (0.42) (0.57) (1.12) (0.32) (0.40) (1.76) (1.20)

512 -0.079 0.215 2.064 5.889 -0.105 0.237 12.147 9.793
(0.19) (0.39) (0.86) (1.36) (0.30) (0.37) (2.28) (1.64)

1024 -0.059 0.240 3.120 8.685 -0.092 0.291 15.207 16.798
(0.23) (0.36) (1.20) (1.64) (0.34) (0.46) (2.18) (2.13)

2048 -0.051 0.278 4.858 12.667 -0.059 0.283 21.543 27.387
(0.25) (0.48) (1.42) (2.03) (0.34) (0.54) (2.47) (2.77)

Ramp Piece-Polynomial

256 0.038 0.294 6.933 5.644 0.017 0.203 12.201 3.988
(0.37) (0.47) (1.54) (1.20) (0.37) (0.37) (1.81) (1.19)

512 0.010 0.293 9.712 9.977 -0.078 0.312 17.765 9.031
(0.36) (0.51) (1.76) (1.67) (0.35) (0.49) (2.72) (1.62)

1024 -0.002 0.300 13.656 16.790 -0.026 0.321 23.321 17.565
(0.30) (0.45) (2.25) (2.06) (0.38) (0.48) (2.96) (2.28)

2048 0.007 0.312 19.113 27.315 -0.007 0.314 31.550 29.461
(0.34) (0.50) (2.68) (2.61) (0.41) (0.49) (3.05) (2.95)

TABLE 1. Comparing several adaptive methods on the six (non-smooth) signals
of interest. For each sample size and each method, we report the average value of
MSE−MSEOracle and the corresponding standard deviation (in parentheses), for
1000 replications of the experiment.

A.2. An auxiliary result. Prior to proceeding with the proof of main theorems, we prove an im-
portant auxiliary result which is the central ingredient of the proofs for our main results.

Lemma 2. Let assumptions of Lemma 1 be satisfied. Let { f̂ λ : λ ∈Λ} be a family of estimators of f

and {r̂λ : λ ∈Λ} a family of risk estimates such that the mapping Y 7→ ( f̂ λ, r̂λ) is a.e. differentiable

for every λ ∈Λ. Let r̂ unb
λ

be the unbiased risk estimate of f̂ λ given by Stein’s lemma.

(1) For every π ∈PΛ and for any β> 0, the estimator f̂ EWA defined as the average of f̂ λ w.r.t. to

the probability measure

π̂(Y ,dλ)= θ(Y ,λ)π(dλ) with θ(Y ,λ) ∝ exp
{
−nr̂λ(Y )/β

}

admits

r̂EWA =
∫

Λ

(
r̂ unb
λ −‖ f̂ λ− f̂ EWA‖

2
n −

2n

β
〈∇Y r̂λ|Σ( f̂ λ− f̂ EWA)〉n

)
π̂(dλ)
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n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler

256 0.387 0.216 0.216 2.278 0.214 0.237 1.608 2.777
(0.43) (0.40) (0.24) (0.98) (0.23) (0.40) (0.73) (1.04)

512 0.170 0.209 0.650 3.193 0.165 0.250 1.200 3.682
(0.20) (0.41) (0.25) (1.07) (0.20) (0.44) (0.48) (1.24)

1024 0.162 0.226 1.282 4.507 0.147 0.229 1.842 5.043
(0.18) (0.41) (0.44) (1.28) (0.19) (0.45) (0.86) (1.43)

2048 0.120 0.220 1.574 6.107 0.138 0.229 1.864 6.584
(0.17) (0.37) (0.55) (1.55) (0.20) (0.40) (1.07) (1.58)

HeaviSine Piece-Regular

256 0.217 0.207 1.399 2.496 0.269 0.279 2.120 2.053
(0.16) (0.42) (0.54) (0.96) (0.27) (0.49) (1.09) (0.95)

512 0.206 0.221 0.024 3.045 0.216 0.248 2.045 2.883
(0.18) (0.43) (0.26) (1.10) (0.20) (0.45) (1.17) (1.13)

1024 0.179 0.200 0.113 3.905 0.183 0.228 1.251 3.780
(0.18) (0.50) (0.27) (1.27) (0.20) (0.41) (0.70) (1.37)

2048 0.162 0.189 0.421 5.019 0.145 0.223 1.650 4.992
(0.15) (0.37) (0.27) (1.53) (0.19) (0.42) (1.12) (1.42)

Ramp Piece-Polynomial

256 0.162 0.200 0.339 2.770 0.215 0.257 1.486 2.649
(0.16) (0.38) (0.24) (1.00) (0.25) (0.48) (0.68) (1.01)

512 0.150 0.215 0.425 3.658 0.170 0.243 1.865 3.683
(0.18) (0.38) (0.23) (1.20) (0.20) (0.46) (0.84) (1.20)

1024 0.146 0.211 0.935 4.815 0.179 0.236 1.547 5.017
(0.18) (0.39) (0.33) (1.35) (0.20) (0.47) (1.02) (1.38)

2048 0.141 0.221 1.316 6.432 0.165 0.210 2.246 6.628
(0.20) (0.43) (0.42) (1.54) (0.20) (0.39) (1.15) (1.70)

TABLE 2. Comparing several adaptive methods on the six smoothed signals of
interest. For each sample size and each method, we report the average value of
MSE−MSEOracle and the corresponding standard deviation (in parentheses), for
1000 replications of the experiment.

as unbiased estimator of the risk.

(2) If furthermore r̂λ ≥ r̂ unb
λ

, ∀λ ∈Λ and
∫
Λ
〈∇r̂λ|Σ( f̂ λ− f̂ EWA)〉nπ̂(dλ) ≥−a

∫
Λ
‖ f̂ λ− f̂ EWA‖2

nπ̂(dλ)
for some constant a > 0, then for every β≥ 2a it holds that

E[‖ f̂ EWA − f ‖2
n] ≤ inf

p∈PΛ

{∫

Λ

E[r̂λ] p(dλ)+
βK (p,π)

n

}
. (A.1)

Proof. According to the Stein lemma, the quantity

r̂EWA = ‖Y − f̂ EWA‖
2
n +

2

n
Tr[Σ(∇· f̂ EWA(Y )]−

1

n
Tr[Σ] (A.2)

is an unbiased estimate of the risk rn = E(‖ f̂ EWA − f ‖2
n). Using simple algebra, one checks that

‖Y − f̂ EWA‖
2
n =

∫

Λ

(
‖Y − f̂ λ‖

2
n −‖ f̂ λ− f̂ EWA‖

2
n

)
π̂(dλ). (A.3)
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FIGURE 5. This figure presents the results of signal denoising for function Piece-
Regular. The first row is the true signal (left) and a noisy version of it (right),
where the noise is white Gaussian with standard deviation σ= 0.33. The second
row presents the denoised signals obtained by EWA (left) and by BJS, ST and URE
(right)

By interchanging the integral and differential operators, we get the following relation: ∂yi
f̂ EWA, j =∫

Λ

{(
∂y j

f̂λ, j (Y )
)
θ(Y ,λ)+ f̂λ, j (Y )

(
∂yi

θ(Y ,λ)
)}
π(dλ). This equality, combined with Equations (A.2)

and (A.3) implies that

r̂EWA =
∫

Λ

(
r̂ unb
λ −‖ f̂ λ− f̂ EWA‖

2
n

)
π̂(dλ)+

2

n

∫

Λ

Tr[Σ f̂ λ∇Y θ(Y ,λ)⊤]π(dλ).

Taking into account that differentiation and integration can be interchanged,
∫
Λ

f̂ EWA

(
∇Y θ(Y ,λ)

)⊤
π(dλ)=

f̂ EWA∇Y

(∫
Λ
θ(Y ,λ)π(dλ)

)
= 0, and we come up with the following expression for the unbiased risk

estimate:

r̂EWA =
∫

Λ

(
r̂ unb
λ −‖ f̂ λ− f̂ n‖

2
n +2〈∇Y logθ(λ)|Σ( f̂ λ− f̂ EWA)〉n

)
π̂(dλ)

=
∫

Λ

(
r̂ unb
λ −‖ f̂ λ− f̂ EWA‖

2
n −2nβ−1〈∇Y r̂λ|Σ( f̂ λ− f̂ EWA)〉n

)
π̂(dλ).

This completes the proof of the first assertion of the lemma.

To prove the second assertion, let us observe that under the required condition and in view of
the first assertion, for every β ≥ 2a it holds that r̂EWA ≤

∫
Λ

r̂ unb
λ

π̂(dλ) ≤
∫
Λ

r̂λπ̂(dλ) ≤
∫
Λ

r̂λπ̂(dλ)+
β
n K (π̂,π). To conclude, it suffices to remark that π̂ is the probability measure minimizing the

criterion
∫
Λ

r̂λp(dλ)+ β
n K (p,π) among all p ∈PΛ. Thus, for every p ∈PΛ, it holds that

r̂EWA ≤
∫

Λ

r̂λp(dλ)+
β

n
K (p,π).

Taking the expectation of both sides, the desired result follows. �
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A.3. Proof of Theorem 1. In what follows, we use the matrix shorthands I = In×n and AEWA ,∫
Λ

Aλθ(λ)π(dλ). We apply Lemma 2 with r̂λ = r̂ unb
λ

. To check the conditions of the second part,

note that in view of Equations (2.4) and (2.6), as well as the assumptions A⊤
λ
= Aλ and Aλ′bλ = 0,

we get

∇Y r̂ unb
λ =

2

n
(I − Aλ)⊤(I − Aλ)Y −

2

n
(I − Aλ)⊤bλ =

2

n
(I − Aλ)2Y −

2

n
bλ.

Recall now that for any pair of commuting matrices P and Q the identity (I −P)2 = (I −Q)2 +
2
(
I − P+Q

2

)
(Q −P) holds true. Applying this identity to P = Aλ and Q = AEWA we get the following

relation: 〈(I − Aλ)2Y |Σ(Aλ− AEWA)Y 〉n = 〈(I − AEWA)2Y |Σ(Aλ− AEWA)Y 〉n −2〈
(
I − AEWA+Aλ

2

)
(AEWA −

Aλ)Y |Σ(AEWA − Aλ)Y 〉n . When one integrates over Λ with respect to the measure π̂, the term
of the first scalar product in the RHS of the last equation vanishes. On the other hand, pos-
itive semi-definiteness of matrices Aλ implies the one of the matrix AEWA and, therefore, 〈

(
I −

AEWA+Aλ

2

)
(AEWA −Aλ)Y |Σ(AEWA −Aλ)Y 〉n ≤ 〈(AEWA−Aλ)Y |Σ(AEWA −Aλ)Y 〉n . This inequality implies

that
∫

Λ

〈∇r̂ unb
λ |Σ( f̂ λ− f̂ EWA)〉nπ̂(dλ)≥−4

∫

Λ

‖Σ1/2( f̂ λ− f̂ EWA)‖2
nπ̂(dλ).

Therefore, the claim of Theorem 1 holds true for every β≥ 8‖|Σ‖|.

A.4. Proof of Theorem 2. Let now f̂ λ = AλY +bλ with symmetric Aλ ¹ In×n and bλ ∈ Ker(Aλ).
According to the definition:

r̂
adj
λ

= r̂ unb
λ +

1

n
Y ⊤(Aλ− A2

λ)Y .

One easily checks that r̂
adj
λ

≥ r̂ unb
λ

for every λ and that

∫

Λ

〈∇r̂
adj
λ

|Σ( f̂ λ− f̂ EWA)〉nπ̂(dλ) =
∫

Λ

〈2(Y − f̂ λ)|Σ( f̂ λ− f̂ EWA)〉nπ̂(dλ)

=−2
∫

Λ

‖Σ1/2( f̂ λ− f̂ EWA)‖2
nπ̂(dλ).

Therefore, all the conditions required in the second part of Lemma 2 are fulfilled as soon as β≥
4‖|Σ‖|. Applying this lemma, we get the desired result.

APPENDIX B. PROOFS OF PROPOSITIONS

B.1. Proof of Proposition 2. It suffices to apply Theorem 1 and to bound from above the RHS of
inequality (2.7)

E(‖ f̂ EWA − f ‖2
n) ≤ inf

p∈PΛ

(∫

Λ

[
|rλ− rλ0 |+ rλ0

]
p(dλ)+

β

n
K (p,π)

)

Then, the RHS of the last inequality can be bounded from above by the minimum over all mea-
sures having pλ0,τ0 (λ) = 1lBλ0 (τ0)(λ)/Leb(Bλ0 (τ0)) as density. Assume moreover that λ0 is such that



AGGREGATION OF AFFINE ESTIMATORS 23

Bλ0 (τ0) ⊂Λ, then using the Lipschitz condition on rλ, the bound on the risk becomes

E(‖ f̂ EWA − f ‖2
n)≤ inf

λ0∈Λ
Bλ0 (τ0)⊂Λ

(∫

Λ

[
|rλ− rλ0 |+rλ0

]
pλ0,τ0 (dλ)+

β

n
K (pλ0,τ0 ,π)

)

E(‖ f̂ EWA − f ‖2
n)≤ inf

λ0∈Λ
Bλ0 (τ0)⊂Λ

(
rλ0+Lr

∫

Λ

‖λ−λ0‖2 pλ0,τ0 (dλ)+
β

n
K (pλ0,τ0 ,π)

)

E(‖ f̂ EWA − f ‖2
n)≤ inf

λ0∈Λ
Bλ0 (τ0)⊂Λ

(
rλ0 +Lrτ0 +

β

n
K (pλ0,τ0 ,π)

)
(B.1)

Now, since λ0 is such that Bλ0 (τ0) ⊂ Λ, the measure pλ0,τ0 (λ)dλ is absolutely continuous w.r.t.
the uniform prior π over Λ and the Kullback-Leibler divergence between these measures equals
log

{
Leb(Λ)/Leb

(
Bλ0 (τ0)

)}
. By the simple inequality ‖x‖2

2 ≤ M‖x‖2
∞ for any x ∈ R

M , one can see

that the Euclidean ball of radius τ0 contains the hypercube of width 2τ0p
M

. So we have the following

lower bound for the volume Bλ0 : Leb
(
Bλ0 (τ0)

)
≥ ( 2τ0p

M
)M . By combining this with inequality (B.1)

the results of Proposition 2 is straightforward.

B.2. Proof of Proposition 3. We begin the proof as for the previous proposition, but pushing the
development of the function λ→ rλ up to second order. So, for any λ∗ ∈R

M , we have

E‖ f̂ EWA − f ‖2
n ≤ inf

λ∗∈RM

(
rλ∗ +

∫

Λ

(
∇r⊤

λ∗(λ−λ∗)+ (λ−λ∗)⊤M (λ−λ∗)
)

pλ∗(dλ)+
β

n
K (pλ∗ ,π)

)

By choosing pλ∗(λ) = π(λ−λ∗) for any λ ∈ R, the second term in the last display vanishes since
the distribution π is symmetric. The third term is computed thanks to the moment of order
2 of a scaled Student t (3) distribution. Recall that if T is drawn from the scaled Student t (3)
distribution, its distribution function is u → 2/[π(1+u2)2], and that ET 2 = 1. Thus, we have that∫
Λ
λ2

1π(λ)dλ= τ2. We can then bound the risk of the EWA estimator by

E
(
‖ f̂ EWA − f ‖2

n

)
≤ inf

λ∗∈RM

(
rλ∗ +Tr(M )τ2 +

β

n
K (pλ∗ ,π)

)
(B.2)

So far, the particular choice of heavy tailed prior has not been used. This choice is important to
control the Kullback-Leibler divergence between two translated versions of the same distribution

K (pλ∗ ,π)=
∫

Λ

log

[
M∏

j=1

(τ2 +λ2
j
)2

(τ2 + (λ j −λ∗
j

)2)2

]

pλ∗(dλ)

K (pλ∗ ,π)= 2
M∑

j=1

∫

Λ

log

[
τ2 +λ2

j

τ2 + (λ j −λ∗
j

)2

]

pλ∗(dλ) .

We bound the quotient in the above equality by

τ2 +λ2
j

τ2 + (λ j −λ∗
j

)2
= 1+

2τ(λ j −λ∗
j
)

τ2 + (λ j −λ∗
j
)2

λ∗
j

τ
+

λ∗
j

τ2 + (λ j −λ∗
j

)2

τ2 +λ2
j

τ2 + (λ j −λ∗
j

)2
≤ 1+

∣∣∣∣
λ∗

j

τ

∣∣∣∣+
(λ∗

j

τ

)2

≤
(
1+

∣∣∣∣
λ∗

j

τ

∣∣∣∣

)2

.
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Since the last inequality is independent of λ and pλ∗ is a probability measure, the integral disap-
pears in the previous bound on the Kullback-Leibler divergence. So we eventually get

K (pλ∗ ,π)≤ 4
M∑

j=1
log

(
1+

∣∣∣∣
λ∗

j

τ

∣∣∣∣

)
.

Combining this with Inequality (B.2), leads the desired result.

B.3. Proof of Proposition 4. To simplify the notation, we set σ= (σ1, . . . ,σn), the vector contain-
ing the standard deviations of the errors ξi . Let τ be a small positive number, the precise value
of which will be given later. Let λ0 = (a0,b0,k0) ∈ [τ,1−τ]2 × {1, . . . ,n} be some fixed element. Let
us define p0(dλ) = 1l[a0−τ,a0+τ](a)1l[b0−τ,b0+τ](b)1l(k = k0)(2τ)−2d adb.

Note that for any λ= (a,b,k), the risk of the estimator AλY is

rλ =
1

n

k∑

i=1

(
(1−a)2 f 2

i +a2σ2
i

)
+

1

n

n∑

i=k+1

(
(1−b)2 f 2

i +b2σ2
i

)
.

In particular, the difference between the risks rλ and rλ′—for two different parameters λ= (a,b,k)
and λ0 = (a0,b0,k0) such that k = k0 is the same in the two cases—can be rewritten as follows:

rλ− rλ0 =
1

n

k∑

i=1

[
2(a0 −a)

{
(1−a0) f 2

i −a0σ
2
i

}
+ (a −a0)2{ f 2

i +σ2
i }

]

+
1

n

n∑

i=k+1

[
2(b0 −b)

{
(1−b0) f 2

i −b0σ
2
i

}
+ (b −b0)2{ f 2

i +σ2
i }

]

So, if we integrate w.r.t. the measure p0(dλ), the terms that are linear in a −a0 and b −b0 disap-
pear and we get

∫

Λ

(rλ− rλ0 ) p(dλ)=
1

n

n∑

i=1
{ f 2

i +σ2
i }

∫τ

−τ
u2 du

2τ
=

τ2

3
(‖ f ‖2

n +‖σ‖2
n). (B.3)

Concerning the Kullback-Leibler divergence between p0 and π, it can be computed as follows:

K (p,π) =
n∑

k=1

∫∫
log

(
p0(d a,db,k)

π(d a,db,k)

)
p0(d a,db,k)

=
∫a0+τ

a0−τ

∫b0+τ

b0−τ
log

( n

4τ2
1l[a0−τ,a0+τ](a)1l[b0−τ,b0+τ](b)

)d a

2τ

db

2τ

= log
( n

4τ2

)
. (B.4)

Now we can use Equation (2.7) with our choice for p0 and π. In view of the computations we
have just done, we get

E(‖ f̂ EWA − f ‖2
n) ≤ inf

p∈PΛ

(∫

Λ

rλ p(dλ)+
β

n
K (p,π)

)

≤
∫

Λ

rλ p0(dλ)+
β

n
K (p0,π)

= rλ0 +
∫

Λ

(rλ− rλ0 )p0(dλ)+
β

n
log

( n

4τ2

)

= rλ0 +
τ2(‖ f ‖2

n +‖σ‖2
n)

3
+
β

n
log

( n

4τ2

)
. (B.5)
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The last expression, considered as a function of τ, admits as global minimum τ2
min = 3β/n(‖ f ‖2

n+
‖σ‖2

n). Replacing this value in (B.5), we get the risk bound:

E(‖ f̂ EWA − f ‖2
n) ≤ E(‖ f̂ λ0

− f ‖2
n)+

β

n

{
1+ log

(n2(‖ f ‖2
n +‖σ‖2

n)

12β

)}
. (B.6)

Now, the desired result follows from the obvious equality n‖σ‖2
n =Tr(Σ).

B.4. Proof of Proposition 5. We assume, without loss of generality, that the matrix n1/2
D coin-

cides with the identity matrix. First, let us fix α0 > 0 and R0 > 0, such that n−1/2 f ∈F (α0,R0) and
define λ0 = (α0, w0) ∈Λ with w0 chosen such that the Pinsker estimator f̂ α0,w0

is minimax over
the ellipsoid F (α0,R0).

In what follows, we set nσ = n/σ2 and denote by pπ the density of π w.r.t. the Lebesgue mea-
sure on R

2
+: pπ(α, w ) = e−αn−α/(2α+1)

σ pw (wn−α/(2α+1)
σ ), where pw is a probability density function

supported by (0,∞) such that
∫

upw (u)du = 1. One easily checks that
∫

R2
αpπ(α, w )dαd w = 1,

∫

R2
w pπ(α, w )dαd w ≤n1/2

σ . (B.7)

Let τ be a positive number such that τ ≤ min(1,α0/(2log w0)) and choose pλ0,τ as a transla-
tion/dilatation of π, concentrating on λ0 when τ→ 0:

pλ0,τ(dλ) = pπ

(λ−λ0

τ

)dλ

τ2
.

In view of Theorem 1,

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0 +

∫

R2
|rα,w − rα0,w0 |pλ0,τ(dλ)+

β

n
K (pλ0,τ,π) . (B.8)

Let us decompose the term rα,w − rα0,w0 into two pieces: rα,w − rα0,w0 = {rα,w − rα,w0 }+ {rα,w0 −
rα0,w0 } and find upper bounds for the resulting terms. With the choice of estimator we did, the
difference between the risk functions at (α, w ) and (α, w0) is:

n(rα,w − rα,w0 )=
n∑

k=1

[(
(1−kα/w )+−1

)2 −
(
(1−kα/w0)+−1

)2]
f 2

k

+
n∑

k=1

[(
(1−kα/w )+

)2 −
(
(1−kα/w0)+

)2]
σ2

Since the weights of the Pinsker estimators are in [0,1], we have

n|rα,w − rα,w0 | ≤2
n∑

k=1

( f 2
k +σ2)

∣∣(1−kα/w )+− (1−kα/w0)+
∣∣ . (B.9)

For any x, y ∈ R, the inequality |x+− y+| ≤ |x − y | is obvious. Combined with α0 ≤ α and w0 ≤ w ,
we have that

∣∣∣
(
1−

kα

w

)

+
−

(
1−

kα

w0

)

+

∣∣∣≤
∣∣∣

kα

w
−

kα

w0

∣∣∣1l{kα≤w} ≤
w −w0

w0
. (B.10)

By virtue of Inequalities (B.9) and (B.10) we get

|rα,w − rα,w0 | ≤2n−1
n∑

k=1

( f 2
k +σ2)

(w −w0)

w0
≤ 2(R0 +σ2)

w −w0

w0
. (B.11)
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Similar calculations lead to a bound for the other absolute difference between risk functions:

|rα,w0 − rα0,w0 | ≤ 2n−1
n∑

k=1

( f 2
k +σ2)

kα−kα0

w0
1l{kα0≤w0}

≤ 2(R0 +σ2)
(
w

α−α0
α0

0 −1
)
. (B.12)

Recall that we aim to bound the second term in the RHS of (B.8). To this end, we need an accurate
upper bound on the integrals of the RHSs of (B.11) and (B.12) w.r.t. the probability measure pλ0,τ.
For the first one, we get

∫∣∣rα,w − rα,w0

∣∣pλ0,τ(dλ) ≤ 2(R0 +σ2)w−1
0

∫

R2
(w −w0)pλ0,τ(dλ)

≤ 4n1/2
σ w−1

0 τ(R0 +σ2). (B.13)

Similar arguments apply to bound the integral of the second difference between risk functions:
∫

R2
|rα,w0 − rα0,w0 |pλ0,τ(dλ) ≤ 2(R0 +σ2)

∫

R2

(
w

α−α0
α0

0 −1
)
pλ0,τ(dλ)

=
2τ(R0 +σ2) log w0

α0 −τ log w0

≤ 4τ(R0 +σ2)α−1
0 log w0, (B.14)

where we used the inequality τ≤α0/(2log w0).

The last term to bound in inequality (B.8) requires the evaluation of the Kullback-Leibler diver-
gence between pλ0,τ and π. It can be done as follows:

K (pλ0,τ,π) =
∫

R2
log

(e− α−α0
τ pw

( w−w0

nα/(2α+1)
σ τ

)

e−αpw

(
w

nα/(2α+1)
σ

)
1

τ2

)
pλ0,τ(dλ)

=
∫

R2

{
α−

α−α0

τ
+ log

pw

( w−w0

nα/(2α+1)
σ τ

)

pw

(
w

nα/(2α+1)
σ

)
}

pλ0,τ(dλ)−2log(τ)

≤ α0 + (τ−1)+
∫

R
2
+

log
(
1+

w

nα/(2α+1)
σ

)3
pλ0,τ(dλ)−2log(τ).

where the third equality is derived thanks to Eq. (B.7) and the obvious relation ‖pw‖∞ = 2. Now,
making the change of variable w = w0 +τnα/(2α+1)

σ u and using the fact that w0 +τnα/(2α+1)
σ u ≤

nα/(2α+1)
σ (w0 +u), we get

∫

R
2
+

log
(
1+

w

nα/(2α+1)
σ

)3
pλ0,τ(dλ) ≤ 3

∫

R+

log
(
1+w0 +u

)
pw (u)du

≤ 3log
(
1+w0 +

∫

R+

upw (u)du
)

= 3log(2+w0).

Eventually, we can reformulate our bound on the risk of the EWA given in (B.8), leading to

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0+4τ(R0 +σ2)

(n1/2
σ

w0
+

log w0

α0

)
+

8σ2
(
α0 +3log

( 2+w0
τ

))

n
. (B.15)

To conclude the proof of the proposition, we set

τ=
α0

n2
σ+α0 +2log w0

, w0 =
(R0(α0 +1)(2α0 +1)

α0

) α0
2α0+1

n

α0
2α0+1
σ .
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According to Pinsker’s theorem,

max
f ∈F (α0,R0)

rλ0 = (1+on(1))min
f̂

max
f ∈F (α0,R0)

E(‖ f̂ − f ‖2
n).

In view of this result, taking the max over f ∈F (α0,R0) in (B.15), we get

max
f ∈F (α0 ,R)

E(‖ f̂ EWA − f ‖2
n) ≤ (1+on (1))min

f̂

max
f ∈F (α0,R)

E(‖ f̂ − f ‖2
n)+O

( log n

n

)
.

This leads to the desired result in view of the relation

liminf
n→∞

min
f̂

max
f ∈F (α0,R)

n
2α0

2α0+1 E(‖ f̂ − f ‖2
n) > 0.

B.5. Proof of Proposition 6. It is clear that all the conditions required in Setting 1 are fulfilled
and we can apply Theorem 3 that yields:

E
(
‖ f̂ GEWA − f ‖2

n

)
≤

m∑

j=1
inf

p j ∈PΛ

(∫

Λ

E‖ f̂
j

λ− f j‖2
n p j (dλ)+

β j

n
K (p j ,π)

)
. (B.16)

Let now λ0 = (α0, w0) be a pair of real numbers such that the estimator f̂ λ0
is minimax over the

Sobolev ellipsoid F (α0,R0). In what follows, we denote by pπ the density of π w.r.t. the Lebesgue
measure on R

2
+: pπ(α, w ) = e−αn−α/(2α+2γ+1)pw (wn−α/(2α+2γ+1)), where pw is a probability den-

sity function supported by (0,∞) such that
∫

upw (u)du = 1. Let τ be a positive number such
that τ ≤ min(1,α0/(2log w0)) and choose pλ0,τ as a translation/dilatation of π, concentrating on
λ0 when τ→ 0:

pλ0,τ(dλ) = pπ

(λ−λ0

τ

)dλ

τ2
.

Let m0 be a positive integer smaller than m the precise value of which will be given later. As an
immediate consequence of (B.16) we get:

E
(
‖ f̂ GEWA − f ‖2

n

)
≤

m0∑

j=1

(∫

Λ

E‖ f̂
j

λ− f j‖2
n pλ0,τ(dλ)+

β j

n
K (pλ0,τ,π)

)
+

m∑

j=m0+1

∫

Λ

E‖ f̂
j

λ− f j‖2
n π(dλ).

Repeating the arguments of the proof of Proposition 5, one can check that

m0∑

j=1

∫

Λ

E‖ f̂
j

λ− f j‖2
n pλ0,τ(dλ) ≤ rλ0 +4τ

(
R0 +n−1

Tm0+1∑

i=1
σ2

i

)
(n1/2w−1

0 +α−1
0 log w0), (B.17)

K (pλ0,τ,π) ≤ α0 +3log
(2+w0

τ

)
. (B.18)

It is obvious that
Tm0+1∑

i=1
σ2

i ≤Cσ2
∗

Tm0+1∑

i=1
i 2γ ≤Cσ2

∗T
2γ+1
m0+1 ≤Cσ2

∗n2γ+1.

Furthermore, using the definition of weakly geometrically increasing groups, we get that

1

2
νn(1+ρn) j ≤T j+1 ≤ νn(1+ρn) j .

This implies that
m0∑

i=1
β2

j ≤Cσ2
∗

m0∑

i=1
T

2γ
j+1 ≤Cσ2

∗m0T
2γ
m0+1 ≤Cσ2

∗m0T
2γ
m0

.
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Let now m0 be chosen in such a way that T
2γ
m0

≤ n(2γ+0.5)/(2α0+2γ+1) < T
2γ
m0+1. The condition log n =

o(logνn) implies that m0T
2γ
m0

= o(T
2γ(2γ+1)/(2γ+0.5)
m0

) = o(n(2γ+1)/(2α0+γ+1)). Therefore, setting τ =
α0

n2+α0+2 logw0
, it holds that

m0∑

j=1

(∫

Λ

E‖ f̂
j

λ− f j‖2
n pλ0,τ(dλ)+

β j

n
K (pλ0,τ,π)

)
= o(n−2α0/(2α0+2γ+1)),

as n →∞. Since the minimax risk over F (α0,R0), as well as rλ0 , is on the order of n−2α0/(2α0+2γ+1),
we get

E
(
‖ f̂ GEWA − f ‖2

n

)
≤ rλ0 (1+o(1))+

m∑

j=m0+1

∫

Λ

E‖ f̂
j

λ− f j‖2
n π(dλ).

Using similar arguments, one checks that the last sum is also o(n−2α0/(2α0+2γ+1)) and the desired
result follows.
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