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SHARP ORACLE INEQUALITIES FOR AGGREGATION OF AFFINE ESTIMATORS

BY ARNAK S. DALALYAN AND JOSEPH SALMON

Ecole des Ponts ParisTech and Université Paris Diderot

We consider the problem of combining a (possibly uncountably in-
finite) set of affine estimators in non-parametric regression model with
heteroscedastic Gaussian noise. Focusing on the exponentially weighted
aggregate, we prove a PAC-Bayesian type inequality that leads to sharp
oracle inequalities in discrete but also in continuous settings. The frame-
work is general enough to cover the combinations of various procedures
such as least square regression, kernel ridge regression, shrinking estima-
tors and many other estimators used in the literature on statistical inverse
problems. As a consequence, we show that the proposed aggregate pro-
vides an adaptive estimator in the exact minimax sense without neither
discretizing the range of tuning parameters nor splitting the set of obser-
vations. We also illustrate numerically the good performance achieved by
the exponentially weighted aggregate.

1. Introduction. There is a growing empirical evidence of superiority of aggregated statistical
procedures, also referred to as blending, stacked generalization, or ensemble methods, with re-
spect to “pure” ones. Since their introduction in the 1990’s, famous aggregation procedures such
as Boosting [28], Bagging [9] or Random Forest [2] have been successfully used in practice for
a large variety of applications. Moreover, most recent Machine Learning competitions such as
Pascal VOC or Netflix challenge have been won by procedures combining different types of clas-
sifiers / predictors / estimators. It is therefore of central interest to understand from a theoretical
point of view what kind of aggregation strategies should be used for getting the best possible
combination of the available statistical procedures.

1.1. Historical remarks and motivation. In the statistical literature, to the best of our knowledge,
the lecture notes of Nemirovski [44] was the first work concerned by the theoretical analysis of
aggregation procedures. It was followed by a paper by Juditsky and Nemirovski [35], as well as by
a series of papers by Catoni (see [13] for a comprehensive account) and Yang [56, 57, 58]. For the
regression model, a significant progress has been achieved by Tsybakov [54] with introducing the
notion of optimal rates of aggregation and proposing aggregation-rate-optimal procedures for the
tasks of linear, convex and model selection aggregation. This point has been further developed
by [11, 39, 42, 47], especially in the context of high dimension with sparsity constraints.

From a practical point of view, an important limitation of the previously cited results on aggrega-
tion is that they are valid under the assumption that the aggregated procedures are deterministic
(or random, but independent of the data used for the aggregation). In the Gaussian sequence
model, a breakthrough has been reached by Leung and Barron [41]. Building on very elegant
but not very well known results by George [30], they established sharp oracle inequalities for the
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exponentially weighted aggregate (EWA) under the condition that the aggregated estimators are
obtained from the data vector by orthogonally projecting it on some linear subspaces. Dalalyan
and Tsybakov [19, 20] have shown that the result of [41] remains valid under more general (non
Gaussian) noise distributions and when the constituent estimators are independent of the data
used for the aggregation. A natural question arises whether a similar result can be proved for a
larger family of constituent estimators containing projection estimators and deterministic ones
as specific examples. The main aim of the present paper is to answer this question by considering
families of affine estimators.

X Y = x
X Y = f;
o Ax x Y = f

FIG 1. The effect of the smoothing matrix Ay on the resulting estimator. In this example, the true signal is the sine
function over [-m, ] and the three matrices represented in the leftmost column are some powers of one convolution
matrix. Large powers correspond to stronger smoothing. One clearly see that the third matrix leads to an almost perfect
recovery of the original signal.

Our interest in affine estimators is motivated by several reasons. First of all, affine estimators
encompass many popular estimators such as smoothing splines, the Pinsker estimator [27, 45],
local polynomial estimators, non-local means [10, 49], etc. For instance, it is known that if the
underlying (unobserved) signal belongs to a Sobolev ball, then the (linear) Pinsker estimator is
asymptotically minimax up to the optimal constant, while the best projection estimator is only
rate-minimax. A second motivation is that—as proved by Juditsky and Nemirovski [36]—the set of
signals that are well estimated by linear estimators is very rich. It contains, for instance, sampled
smooth functions, sampled modulated smooth functions and sampled harmonic functions. One
can add to this set the family of piecewise constant functions as well, as demonstrated in [46]
with natural application in magnetic resonance imaging. It is worth noting that oracle inequal-
ities for penalized empirical risk minimizer has also been established by Golubev [34], and for
model selection by Arlot and Bach [3], Baraud, Giraud and Huet [7].

In the present work, we establish sharp oracle inequalities in the statistical model of heteroscedas-
tic regression, under various conditions on the constituent estimators assumed to be affine func-
tions of the data. Our results provide theoretical guarantees of optimality, in terms of the ex-
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pected loss, for the exponentially weighted aggregate. They have the advantage of covering in a
unified fashion the particular cases of frozen estimators considered by Dalalyan and Tsybakov
[20] and of projection estimators treated by Leung and Barron [41].

We will mainly focus on the theoretical guarantees expressed in terms of oracle inequalities for
the expected squared loss. Interestingly, despite the fact that several recent papers [3, 7, 18, 32]
discuss the paradigm of competing against the best linear procedure from a given family, none
of them provide oracle inequalities with leading constant equal to one. Furthermore, most exist-
ing results involve some constants depending on different parameters of the setup. In contrast,
the oracle inequality that we prove herein is with leading constant one and admits a very simple
formulation. It is established for a (suitably symmetrized, if necessary) exponentially weighted
aggregate [13, 21, 30] with an arbitrary prior and a temperature parameter which is not too small.
The result is completely nonasymptotic and leads to asymptotically optimal residual term in the
case where the sample size, as well as the cardinality of the family of competitors, tend to infinity.
In its general form, the residual term is similar to those obtained in PAC-Bayes setting [38, 43, 50]
in that it is proportional to the Kullback-Leibler divergence between two probability distribu-
tions.

1.2. Notation. Throughout this work, we focus on the heteroscedastic regression model with
Gaussian additive noise. More precisely, we assume that we are given a vector Y = (y,---, y,,)T €
R" obeying the model:

yvi=fi+é;, fori=1,...,n, (1.1)

where & = ({4,...,¢ ,,)T is a centered Gaussian random vector, f; = f(x;) where f is an unknown
function & — R and x1,...,x, € & are deterministic points. Here, no assumption is made on the
set Z. Our objective is to recover the vector f = (fi,..., f), often referred to as signal, based on
the data yy,..., y». In our work, the noise covariance matrix X = E[EET] is assumed to be finite
with a known upper bound on its spectral norm. We measure the performance of an estimator
f by its expected empirical quadratic loss: r = E(|l f - f112) where || f - fI2 = 15" (fi - f)>. We
also denote by (:|-), the corresponding empirical inner product.

Let us describe now different families of linear and affine estimators successfully used in the
statistical literature. Our results apply to all these families leading to a procedure that behaves
nearly as well as the best one of the family.

Ordinary least squares Let {#; : A € A} be a set of linear subspaces of R”. A well known family
of affine estimators, successfully used in the context of model selection [8], is the set of
orthogonal projections onto .#. In the case of a family of linear regression models with
design matrices X, one has Ay = X,I(X/IX A)*XT, where (X}TX,I)Jr stands for the Moore-
Penrose pseudoinverse of X;X 1

Diagonal filters Another set of common estimators are the so called diagonal filters f = AY,
where A is a diagonal matrix A = diag(a,, ..., a,). Popular examples include:

v Ordered projections : ay = lx<y) for some integer A (where 1, is the indicator func-
tion). Those weights are also called truncated SVD or spectral cut-off. In this case the
natural parametrization is A = {1,..., n}, indexing the number of elements conserved.

v Block projections: ay = Lig<y,) +Z;?1:_11 Ajll(szkguj“)» k=1,...,n, where 1; € {0,1}.
Here the natural parametrization is A = {0, -l indexing subsets of {1, m — 1}.
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v Tikhonov-Philipps filter: a; = H(k#)“’ where w,a > 0. In this case, A = ([Rfr)z, index-
ing continuously the smoothing parameters.

Vv Pinsker filter: aj = (1 - k—;) o where x; = max(x,0) and w, « > 0. In this case also A =
R
Kernel ridge regression Assume that we have a positive definite kernel k : & x & — R and we
aim at estimating the true function f in the associated reproducing kernel Hilbert space
(#, |I - k). The kernel ridge estimator is obtained by minimizing the criterion || Y — f|? +
/lllflli w.r.t. f € #% (see [51, page 118]). Denoting by K the nxn kernel-matrix with element
Kij= k(x,-,xj), the unique solution f is a linear estimate of the data, f' =A,Y, with A) =
K(K +nAl,x,)"Y, where I,,x, is the identity matrix of size n x n.
Multiple Kernel learning As described in [3], it is also possible to handle the case of several
kernels ki,..., ky;, with associated positive definite matrices Kj,..., Ky;. For a parameter
A=A1,.. , A EA= Rﬂf’ one can define the estimators f’/l = A, Y with

M M

Ay = ( y }Lme)( S Ao + nlnxn) . (1.2)
m=1 m=1
It is worth mentioning that the formulation in Eq.(1.2) can be linked to the group Lasso
[59] and to the multiple kernel introduced in [37] — see [3, 6] for more details.

Moving averages If we think of coordinates of f as some values assigned to the vertices of an
undirected graph, satisfying the property that two nodes are connected if the correspond-
ing values of f are close, then it is natural to estimate f; by averaging out the values Y;
for indices j that are connected to i. The resulting estimator is a linear one with a matrice
A= (“ij)?,jﬂ such that ajj= 1y, (j)/n;, where V; is the set of neighbors of the node i in the
graph and n; is the cardinality of V;.

Non-local means In recent years, a signal denoising method—termed non-local means (NLM)—

has become quite popular in image processing [10]. This method removes the noise by
exploiting the signal self-similarities and has been shown to be tied in with the exponen-
tially weighted aggregate [49]. We briefly define the NLM procedure in the case of one-
dimensional signals.
Assume that a vector Y = (y1,..., yn) given by (1.1) is observed with f; = F(i/n), i =1,...,n,
for some function F: [0,1] — R. For a fixed “patch-size” k € {1,...,n}, let us define f; =
(fir fi+1r--- firk=1) and Yy = Vi, Vi+1,.--» Visk—1) for every i =1,...,n—k + 1. The vectors
S and Y|;) are respectively called true patch and noisy patch. The NLM consists in re-
garding the noisy patches YJ;) as constituent estimators for estimating the true patch f; |
by applying the EWA. One easily checks that the constituent estimators Y|;; are affine in
Yy, thatis Yy = A; Y, + b; with A; and b; independent of Y|;;. Indeed, if the distance
between i and iy is larger than k, then Y|; is independent of Y;,; and, therefore, A; = 0
and b; = Yy;;. If |i — ip| < k, then the matrix A; is a suitably chosen shift matrix and b; is the
projection of Y|; onto the orthogonal complement of the image of A;.

1.3. Organization of the paper. In Section 2, we introduce EWA and state a PAC-Bayes type
bound in expectation assessing optimality properties of EWA in combining affine estimators. The
extension of these results to the case of a grouped aggregation—in relation with the ill-posed in-
verse problems—is discussed in Section 3. As a consequence, we provide in Section 4 sharp oracle
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inequalities in various set-ups: ranging from finite to continuous families of constituent estima-
tors and including the sparsity scenario. In Section 5, we apply our main results to prove that
combining Pinsker’s type filters with EWA leads to an asymptotically sharp adaptive procedure
over Sobolev ellipsoids. Section 6 is devoted to numerical comparison of EWA with other clas-
sical filters (soft thresholding, blockwise shrinking, etc.), and illustrates the potential benefits of
aggregating. Conclusion is presented in Section 7, while technical proofs are postponed to the
Appendix.

2. Aggregation of estimators: main results. In this section we describe the statistical frame-
work for aggregating estimators and we also introduce the exponentially weighted aggregate. The
task of aggregation consists in estimating f by a suitable combination of the elements of a family
of constituent estimators F, = ( f Viena € R, The target objective of the aggregation is to build
an aggregate f aggr that mimics the performance of the best constituent estimator, called oracle
(because of its dependence on the unknown function f). In what follows, we assume that A is a
measurable subset of RM, for some M € N.

The theoretical tool commonly used for evaluating the quality of an aggregation procedure is the
oracle inequality (OI), generally written in the following form:

N fagge = 15 = Ca inf (ELfy = F13) + R, @1

with residual term R, tending to zero, and leading constant C, being bounded. The OlIs with
leading constant one are of central theoretical interest since they allow to bound the excess risk
and to assess the aggregation-rate-optimality.

2.1. Exponentially Weighted Aggregate (EWA). Letry = [E(IIf)L — f12) denote the risk of the esti-
mator f 1 forany A € A, and let 7, be an estimator of r,. The precise form of 7, strongly depends
on the nature of the constituent estimators. For any probability distribution 7 over the set A and
for any B > 0, we define the probability measure of exponential weights, 7, by the following for-
mula:

exp(—nfy/p)

adA) =0)r(dA)  with (1) = Jrexp(=niyl P)m(dw)’

(2.2)

The corresponding exponentially weighted aggregate, henceforth denoted by f'EWA, is the expec-
tation of the f, w.r.t. the probability measure 7:

waﬁfAﬂ #(dA). 2.3)

It is convenient and customary to use the terminology of Bayesian statistics: the measure 7 is
called prior, the measure 7 is called posterior and the aggregate f'EWA is then the posterior mean.
The parameter § will be referred to as the temperature parameter. In the framework of aggregat-
ing statistical procedures, the use of such an aggregate can be traced back to George (29, 30].

The interpretation of the weights 0(A) is simple: they up-weight estimators all the more that their
performance, measured in terms of the risk estimate 7, is good. The temperature parameter re-
flects the confidence we have in this criterion: if the temperature is small (8 = 0) the distribution
concentrates on the estimators achieving the smallest value for 7, assigning almost zero weights
to the other estimators. On the other hand, if § — +oco then the probability distribution over A is



6 DALALYAN AND SALMON

simply the prior 7, and the data do not modify our confidence in the estimators. It should also
be noted that averaging w.r.t. the posterior 7 is not the only way of constructing an estimator of
[, some alternative estimators based on 7 have been studied, for instance, by Audibert in [4, 5].

2.2. Main results. In this paper, we only focus on affine estimators f' 1 I-e., estimators that can
be written as affine transforms of the data Y = (y1,...,y,)" € R". Using the convention that all
vectors are one-column matrices, affine estimators can be defined by

f1=ALY +by, (2.4)

where the n x n real matrix Ay and the vector b; € R"” are deterministic. This means that the
entries of Ay and by may depend on the points xy,..., X, but not on the data vector Y. Let I,,«,,
denote the identity matrix of size n x n. It is well-known (see Section A for details) that the risk of
the estimator (2.4) is given by

N Tr(AyZA})
ra =Ellf, - FI2] :||(AA—1nxn)f+lu||i+% (2.5)
and that fimb, defined by
~unb 82 2 1
PP = 1Y - fl3 + ;Tr(ZA;L) —ZTr[Z] (2.6)

is an unbiased estimator of r;.

To state our main results, we denote by &2, the set of all probability measures on A and by
K (p, p') the Kullback-Leibler divergence between two probability measures p, p’ € Py:

dp . ’
log( -5 (A dl) ifp<xp,
Hppy= 1A g(zyW)p@r) ifp<p
+00 otherwise.
THEOREM 1. Assume that the matrices Ay are all symmetric and satisfy AyAy = Ay Ay, ApZ+
2Ay =0 and Ayby =0 for all A, \' € A. Then, the aggregate f,,, defined by Equations (2.2), (2.3)
and the unbiased risk estimate 7) = f}ﬂnb (2.6) satisfies the inequality

E(Il fus — F112) < in (f Ellfy - FI2 pdr) + p H (p,70) 2.7)
pePr \JA n
provided that B = 8||Z|l, where ||Z|| stands for the spectral nor of X.

REMARK 1. The simplest setting in which all the conditions of Theorem 1 are fulfilled is when the
matrices Ay and X are all diagonal, or diagonalizable in a common base.

This theorem, as we will see in Section 5, allows us to propose a new adaptive estimator, in the ex-
act minimax sense, over the collection of all Sobolev ellipsoids. It also suggests a new method for
efficiently combining varying-block-shrinkage shrinkage estimators, as described in Section 4.4.

The result of Theorem 1 applies to the estimator f'EWA that uses the full knowledge of the covari-
ance matrix X. Indeed, even if for the choice of § only an upper bound on the spectral norm of

is required, the entire matrix X enters in the definition of the unbiased risk f}ﬂnb that is used for
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defining f'EWA. We will discuss in Section 7 some extensions of the proposed methodology to the
case of unknown X.

Theorem 1 gives already satisfactory answers to a certain number of questions; however, it leaves
open the issue of aggregating affine estimators defined via non-commuting matrices. For exam-
ple, the previous results do not allow us to evaluate the MSE of the EWA when each A, is a con-
vex or linear combination of a fixed family of projection matrices on non-orthogonal linear sub-
spaces. In order to cover such kind of situations, we develop a theory that recommends to use
the EWA with an adjusted risk estimate:

, . 2 1 1
fjdl =lY - f1% + — Tr(ZAy) — — Tr[Z] +— YT (A -ADY. (2.8)

N J
-

2unb
A

We still assume that Ay is symmetric and positive semidefinite, as well as that by € Ker(A,) for
adj
A

if and only if the matrix A, is an orthogonal projector.

every A. One can notice that the adjusted risk estimate 7, ° coincides with the unbiased risk esti-

sunb

mate l’/l

THEOREM 2. Ifthe matrices Ay are all symmetric with Ay < I,,x,, and b) € Ker(A)) forevery L€ A,
then the aggregate fEWA defined by Equations (2.2), (2.3) and the adjusted risk estimate 7) = fidl

(2.8) satisfies the inequality
2 2y < 2 2 B
E(1fn=f13) = inf { [ E1F =S ptan+ 2 e (pm

LT 2 1 2
+f/\(ﬁf (AA_AA)]%L;Tr[Z(AA—AA)])p(dM}

provided that B = 4| Z]|.

A first observation that one can make is that, in the particular case of a finite collection of pro-
jection estimators (i.e., Ay = Ai and by = 0 for every A) this result reduces to [41, Corollary 6].
Furthermore, Theorem 2 handles the general noise covariances while [41] deals only with i.i.d.
Gaussian noise.

An important situation that is covered by Theorem 2 but not by Theorem 1 concerns the case
when the signals of interest f are smooth or sparse in a basis %;;g which is different from the
basis %Bnoise Orthogonalizing the covariance matrix XZ. In such a situation, one may be interested
in considering matrices A, that are diagonalizable in the basis % which, in general, do not
commute with 2.

REMARK 2. We decided in this paper to focus on the case of Gaussian errors, in order to put the
emphasis on the possibility of efficiently aggregating almost any family of affine estimators with-
out spending time and space on other technical aspects. Most results stated in this section can be
generalized to other noise distributions by following the approach developed in [20].

REMARK 3. An equivalent and, perhaps, more convenient way of writing the risk bound of Theo-
rem 2 is the following:

~ 1
E(I fy— F12) < inf {—f (fT(Inxn—A,l)f+Tr[ZA,1])p(d)L)+é,]{(p,n)}.
p€9A nJa n
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We opted for not stating Theorem 2 in this form, in order to stress the relation between the risk of
the aggregate and those of constituent estimators.

All the results presented so far concern the situation when the matrices A, are symmetric. How-
ever, using the last theorem it is possible to propose an estimator that is almost as accurate as the
best affine estimator A, Y + b, even if the matrices A, are not symmetric. Interestingly, the esti-
mator enjoying this property is not obtained by aggregating the orlglnal estimators f 1=ArY+by
but the “symmetrized” estimators f 1= A,Y + by where Ay = Ay + A} — A} A,. Besides symme-
try, an advantage of the matrices A,, as compared to the matrices A, is that they automatically
satisfy the contraction condition Aj < I, required by Theorem 2.

COROLLARY 1. Let{A): A€ A} be any family of n x n matrices and {b, : A € A} be a set of vectors
of R" satisfying Ayby = A} by =0 for every A € A. Assume in addition that A is equiped with a o -
algebra so that the mappmg/l (Ay, by) is measurable. Let f,,,, denote the exponentially weighted
aggregate of estimators f = ) = (Ay + A} — AL A)Y + by with the weights (2.2) defined via the risk
estimate runb Then, for every B = 4|IZ|ll, it holds that

(1o -f13] = inf { [ €10 £1EIp@n+ £ pumf + Liog| [ o3 ey

The proof of this corollary is very simple: it consists in applying Theorem 2to the affine estima-
tors f/l with the prior 7(dA) replaced by e? p TIZ(AL- A3 A)] n(dA)] [ e 5 TZ(Aw=Ay Au N rdw).

REMARK 4. It follows from Corollary 1 that

€[\~ £12] = inf { [ E[1F - P12 pan+

K (p, 7'[)} 2.9
not only when the prior n is supported by the set of projection matrices, but under more general
condition

(C) m{le A:Tr(ZAy) < Tr(ZAJAp} =1

If the matrix X is diagonal, a notable example of linear estimators that satisfy this condition are
Nadaraya-Watson estimators with rectangular kernel, also called moving averages or nearest neigh-
bor filters (in the case of a regularly spaced design). Below is a visual illustration of a matrix defin-
ing a moving average estimator:
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Input: data vector Y € R", n x n noise covariance matrix X and a family of linear
smoothers {f; = Ay Y; 1€ A},

Output: estimator f,,, of the true function f.

Parameter: prior probability distribution 7 on A, temperature parameter > 0.

Strategy:

1. For every A, compute the risk estimate 747 = |V — £, |5 + 2 Tr(ZA,) - L Tr[z).
2. Define the prob. distribution 7 (d1) = 8(1)w(dA) with 8(A) exp(—nf/‘{nb/ B).

3. For every A, build the symmetrized linear smoothers f 1= Ay + Al - ALA)Y.
4. Average out the symmetrized smoothers w.r.t. posterior 7: f,, = [y f17(dA).

FIG 2. The symmetrized exponentially weighted aggregation strategy for competing against the best linear smoother in
a given family.

Under a little bit more stringent assumption of homoscedasticity, i.e., when X = 02 I,;x, if the ma-
trices Ay are such that all the non-zero elements of each row are equal and sum up to one (or a
quantity larger than one) then Tr(A,) < Tr(AXA 1) and (C) is fulfilled.

Another class of matrices for which (C) holds true are those having only zeros on the main diago-
nal.

3. Ill-posed inverse problems and group-weighting. As explained in [14, 17], the model of het-
eroscedastic regression is well suited for describing inverse problems. In fact, let T be a known
linear operator on some Hilbert space /#, equipped with an inner product (:|-) 7». For some
he , let Y be the random process indexed by g € # such that

Y=Th+el < (Y(g)=(Thig),+eig), Vge), 3.1)

where € > 0 is the noise magnitude and ¢ is the white Gaussian noise on /, i.e., for any g,...,8k €
A the vector (Y (g1),...,Y(gx)) is Gaussian with zero mean and covariance matrix {(g;| gj) e}
The statistical problem is then the following: estimate the element & assuming that the value of
Y for any given g can be measured.

It is customary to use as “probe elements” g the eigenvectors of the adjoint of T, denoted by T*.
Suppose that the operator T* T is compact, then one has the singular value decomposition

Ty = ka/k, T*lllk = bk(Pk» keN, (3.2)

where by are the singular values, {y/;} is an orthonormal basis in Range(T) c A and {¢y} is the
corresponding orthonormal basis in /. In view of (3.1), it holds that:

Y (i) =(hldpr) b +e€yr),  keN. (3.3)

Since in practice only a finite number of measurements can be computed, it is natural to as-
sume that the values Y (y) are available only for k smaller than some integer n. Under the as-
sumption that by # 0 the last equation is equivalent to (1.1) with the choice f; = (hl¢;) ,, and
= diag(a?, i=1,--)whereo; = gbl._l. Important examples of inverse problems to which this sta-
tistical model has been successfully applied are derivative estimation, deconvolution with known
kernel, computerized tomography—see [14] and the references therein for more applications.
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For very mildly ill-posed inverse problems, i.e., when the singular values by of the operator T
decrease to zero not faster than any negative power of k, the approach presented in previous
section will lead to satisfactory results. Indeed, choosing § = 8|IZ|| or g = 4||Z]ll, the remainder
term in (2.7) and (2.9) becomes—up to a logarithmic factor—proportional to maxlsksnblzzln,
which is the optimal rate in the case of very mild ill-posedness.

However, even for mildly ill-posed inverse problems, the approach developped in previous sec-
tion becomes obsolete since the remainder blows up when 7 increases to infinity. Furthermore,
this is not an artefact of our theoretical results, but is a drawback of the aggregation strategy
adopted in the previous section. Indeed, the posterior probability measure 7 defined by (2.2) can
be seen as the solution of the entropy-penalized empirical risk minimization problem:

L . B
iy = arglrl}f{fA FapdA) + ;I(p,n)}, (3.4)

where the inf is taken over the set of all probability distributions. This means that the same reg-
ularization parameter f is employed for estimating both the coefficients f; = (hl¢;) , corrupted
by noise of small magnitude and those corrupted by large noise. Since we place ourselves in the
setting of known operator T and, therefore, known noise levels, such a uniform treatment of all
coefficients f; is not reasonable. It is more natural to upweight the regularization term in the case
of large noise downweighting the data fidelity term and, conversely, to downweight the regular-
ization in the case of small noise upweighting the data fidelity term. This observation leads us to
the grouped version of the exponentially weighted aggregate.

Let us consider a partition By, ..., B;, of the set {1,...,n}: Bj={Tj+1,...,Tj11}, for some integers
0=T; <T;<...< Tpys1 = n.To each element B; of this partition, we associate the data sub-vector
Y =(Y;:i€ Bj) and the sub-vector of true function f/ = (fj: i€ Bj). As in previous section, we
are concerned by the aggregation of affine estimators f' 1= A,Y +b) but we will assume here that
the matrices Ay are block-diagonal:

Al 0 ... 0
0 A2 ... 0 .

A= M .|, with AieR(Tﬂl‘Tﬂ*(TJH—Tﬂ.
0 0 .. A}

Similarly, we define f'/{ and bﬁ as the subvectors of f , and b,, respectively, corresponding to the
indices belonging to B;. We will also assume that the noise covariance matrix X is block-diagonal
with (Tj11—T)x(Tj4+1—T}) blocks >J. These notation imply in particular that f'/{ = Afl Y/ + bi for

every j = 1,..., m. Moreover, the unbiased risk estimate f}ﬂnb of f , can be decomposed into the

. . . ~Jj,unb Al sunb _ vm aJjunb
sum of unbiased risk estimates 7" of f}; namely 77" = L where
pimb g 1y 2 s ady - Loy i=1,...m
A A n A n » J yeeoy 1.

To state the analogues of Theorem 1 and Remark 4 we introduce the following two settings.

Setting 1: All the matrices Aﬁ are symmetric and satisfy AﬁAﬁ, = Aﬁ,Aﬁ, AﬁZj +2/ Aﬁ > 0 and

Aﬁ,bﬁ =0 for all A,A’ € A and for all j € {1,..., m}. For a vector of temperature parameters
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p=0B..., ,Bm)T and for a prior 7, we define the group exponentially weighted aggregate
(GEWA) as f . = [\ f1#/(dA), where

. : . exp(— nid unb/,B]
A dA) =0 V)r(dA) with 6’ = b . (3.5)
Jnexp(=ni} "™ 1B )n(dw)

Setting 2: For every j =1,...,m and for every A belonging to a set of 7-measure one, the matri-
ces A, satisfy the 1nequa11ty Tr(z/ A’ Y= Tr(z/ (A )T A A3) while the vectors b, are such that

A] b] (A] )" b] = 0. In this case, for a vector of temperature parameters f§ = (f,... ,Bm)T

and for a prior 7, we define the group exponentially weighted aggregate (GEWA) as fGFWA
[ fi#i@r), where f = (Af + (Af )" - (Af )TAJ )Y+ b’ and 7/ is defined by (3.5).

THEOREM 3. Under Setting 1, if fj = 8IIZ/ I forevery j=1,...,m, then

[E(”fGEWA_f”%l) = Z in; (f [E”f/l f]”np](dl)"— IB ,]{(p],ﬂ) (3.6)

j=1Pi€a

Furthermore, the same inequality holds true under Setting 2 provided that ; = 4||Z/ || for every
j=L....m

As we shall see it in Section 5, this theorem allows us to propose an estimator of the unknown
signal which is adaptive w.r.t. the smoothness properties of the underlying signal and achieves
the minimax rates and constants over the Sobolev ellipsoids provided the operator T is mildly
ill-posed, i.e., its singular values decrease at most polynomially.

4. Examples of sharp oracle inequalities. In this section, we discuss consequences of the main
result for specific choices of prior measures. For coveying the main messages of this section it is
enough to focus on the Settings 1 and 2 in the case of only one group (m = 1). In this situation,
the estimators fEWA and f'GEWA coincide.

4.1. Discrete oracle inequality. In order to demonstrate that Inequality (3.6) can be reformulated
in terms of an OI as defined by (2.1), let us consider the case when the prior 7 is discrete. That is,
we assume that 7 (Ag) = 1 for a countable set Ay = A. Without loss of generality, we assume that
Ao =N. Then, the following result holds true.

PROPOSITION 1. Under Setting 1 with m =1 and 3 = if n is supported by N, then the aggregate
S Satisfies the inequality

~ . A log(1/my)
EQf—fi2 < inf (ENf,— 12+ 21080/ 4.1)
(eN:my>0 n

provided that p = 8||Z||. Furthermore, the same inequality holds true under Setting 2 provided that
B =4zl

PrOOE. It suffices to apply Theorem 1 and to bound the RHS from above by the minimum over
all Dirac measures p = §, with ¢ such that 7, > 0. O
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This inequality can be compared to Corollary 2 in [7, Section 4.3]. Our inequality has the advan-
tage of having factor one both in front of the expectation of the LHS of (4.1) and in front of the inf
of the RHS. It should be noted, however, that we consider the noise covariance matrix as known,
whereas [7] estimates the noise covariance along with the regression function.

4.2. Continuous oracle inequality. It may be useful in practice to combine a family of affine
estimators indexed by an open subset of R, for some integer M > 0, for instance when the aim
is to build an estimator that is nearly as accurate as the best kernel estimator with fixed kernel
and varying bandwidth. In order to state an oracle inequality in such a “continuous” setup, let us
denote by d»(A, A) the largest real 7 > 0 such that the ball centered at A with radius 7 is included
in A. In what follows, Leb(:) stands for the Lebesgue measure.

PROPOSITION 2. Let A <RM be an open and bounded set and let m be the uniform probability on
A. Assume that the mapping A — r is Lipschitz continuous, i.e., |1y —ra| < Ly |A'=Allp, VA, A" € A.
Under Setting 1 with m =1 and 8 = 1 = 8||1ZI| the aggregate f...., satisfies the inequality

VM )} . L, + Blog(Leb(A))
2min(n~1,d>(A, A)) ‘

pM
n

El fon = S 15 <inf {ELf = 15+ = = log| 4.2)
AeA

n

Furthermore, the same inequality holds true under Setting 2 for every = 4| Z||..

PROOF. Let us denote by Bj(t) the Euclidean ball in RM with radius 7 > 0 and centered at A €
RM. It suffices to apply Theorem 1 and to bound the RHS in Inequality (2.7) from above by the
minimum over all measures having as density pj,,,(A) = llBAO (r,) (A)/Leb(By, (7). For a choice
Ao = min(n~!,dy(A, A)) such that B 2,(To) € A, the measure pjy, ;,(A)dA is absolutely continu-
ous w.r.t. the uniform prior # and the Kullback-Leibler divergence between these two measures
equals log{Leb(A)/Leb(B,,(t0))}. Using the obvious inequality Leb(By,(7¢)) = (%)M and the
Lipschitz condition, we get the desired inequality. O

Note that it is not very stringent to require that the risk function r, is Lipschitz continuous, es-
pecially that this condition needs not be satisfied uniformly in f. As an example, let us con-
sider the ridge regression: for a given design matrix X € R"”P, Ay = X(X X + YA psn) 1 X7
with A € [A4,A*], where y,, is a given normalization factor typically set to n or v/n, 1, > 0 and
A* € [A4,00]. One easily checks that the Lipschitz continuity of the risk function is satisfied with
Ly =L.(f) =4AN N fI2 + 2T (Z/ n).

4.3. Sparsity oracle inequality. The continuous oracle inequality stated in previous subsection
is well adapted to the case where the dimension M of A is small compared to the sample size
n (or, more precisely, the signal to noise ratio n/|[|Z]l]). If this is not the case, the choice of the
prior should be done more carefully. For instance, consider the case of a set A = RM with large
M under the sparsity scenario: there is a sparse vector A* € A such that the risk of f 2+ is small.
Then, it is natural to choose a prior 7 that promotes the sparsity of A. This can be done in the
same vein as in [19, 20], by means of the heavy tailed prior:

M

n(dA) o []

. 77 I, (4.3)
j=1

(1+|/1j/T|

where 7 > 0 is a tuning parameter.
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PROPOSITION 3. Let A = RM and let n be defined by (4.3). Assume that the mapping A — 1 is
continuously differentiable and, for some M x M matrix 4, satisfies:

-y —VryA-A)sA-A)uA-1), VAN EA. (4.4)

Under Setting 1 if B = 8||Z|||, then the aggregate fEWA = fGEWA satisfies the inequality

[E(”fEWA_f”%l) < in

ez AP 14l 2
MRM{[Ean i+ jz_llog(H - )}+Tr(M)T. (4.5)

Moreover, the same inequality holds true under Setting 2 provided that = 4| Z]||.

Let us discuss here some consequences of this sparsity oracle inequality. First of all, let us re-
mark that in most cases—see, for instance, [20, 21] in the case of frozen estimators—Tr(.#) is on
the order of M and the choice 7 = /f/(nM) ensures that the last term in the RHS of Eq. (4.5)
decreases at the parametric rate 1/n. This is the choice we recommend for practical applications.

Assume now that we are given a large number of linear estimators g, = G,Y,..., &, = G Y sat-
isfying, for instance, conditions of Setting 1. We will focus on matrices G; having a spectral norm
bounded by one (it is well known that the failure of this condition makes the linear estimator
inadmissible). Assume furthermore that our aim is to propose an estimator that mimics the be-
havior of the best possible convex combination of a pair of estimators chosen among &,,...,&,-
This task can be accomplished in the framework of the present paper by setting A = RM and
f’A =018, +...Am8p Where A = (A;,...,Ap). If {g;} satisty conditions of Setting 1, then it is
also the case for { f 2}. Moreover, the mapping A — r, is quadratic with the Hessian matrix V2ry
given by the entries 2(G; fIG; f)n + % Tr(GjZG)), j,j' = 1,..., M. This implies that Inequality (4.4)
holds with .# being the Hessian divided by 2. Therefore, denoting by o? the ith diagonal en-
try of  and setting o = (01,...,0,), we get Tr(.4) < |||Z§Yi1 G?Hl(llfllfl +lal2) < MU FIZ + lal?),
where the norm of a matrix is understood as its largest singular value. Applying Proposition 3

with 7 = +/B/(nM), we get
Ell o — 1% < JnfEllag;+(1-a)g; - Vi
8p Mn) B 2 2
+—1lo (1+—)+— +llalls), 4.6
. g 5 n(llflln loll7) (4.6)
where the inf is taken over all a € [0,1] and j, j’ € {1,..., M}. We restrict our choice to A having
at most two non-zero coefficients, 1;, and A, that are non-negative and sum to one: A;, + 1, =

1. Then, the summation in the RHS of inequality (4.5) has simply two terms controlled by the
following inequality

log(1+A4;,77 ") +log(1+A;,77") =2log(1+77"). 4.7)

In practice, 72 = §/(Mn) <1 so log(1+77!) <log(1+772) and Inequality (4.6) holds true.

This shows that, using the EWA, one can achieve the best possible risk over the convex combi-
nations of a pair of linear estimators—selected from a large (but finite) family—at the price of a
residual term that decreases at the parametric rate up to a log factor.
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4.4. Oracle inequalities for varying-block-shrinkage estimators. Let us consider now the prob-
lem of aggregation of two-block shrinkage estimators. It means that the constituent estimators
have the following form: for A = (a, b, k) € [0, 112x{1,...,n}:=A, f’A =AY where Ay = diag(a]l(i <
k)+ bl(i > k),i = 1,---,n). Let us choose the prior 7 as the uniform probability distribution on
the set A.

PROPOSITION 4. Let f'EWA be the exponentially weighted aggregate having as constituent estima-
tors two-block shrinkage estimators Ay Y. If X is a diagonal matrix, then for any A € A and for any
B =8lIZll,

B1) +tog (P ot nIYG)y) m

2 2 2 2
[E(IIfEWA—fIIn)SE(IIfA—fIIn)+; 126
In the case X = I, x5, this result is comparable to [40, page 20, Theorem 2.49], which states that
in the model of homoscedastic regression (Z = I,,x,), the EWA acting on two-block positive-part

James-Stein shrinkage estimators satisfies, for any k = 3,---,n—3, and for g = 8, the oracle in-
equality
~ ~ 9 8 n—6
— 2 — 2 — — 1 —
E(1 Leung = 13 SEULf2 = 13+~ + —min {K v (log—= - 1]}. 4.9)

5. Application to minimax adaptive estimation. In the celebrated paper [45], Pinsker proved
that in the model (1.1) the minimax risk over ellipsoids can be asymptotically attained by a lin-
ear estimator. Let us denote by 0 (f) = (fl@r)» the coefficients of the (orthogonal) discrete co-
sine! transform of f, hereafter denoted by @f. Pinsker’s result—restricted to Sobolev ellipsoids
Fg@,R) ={feR": - k*20(f)? < R} —states that, as n — oo, the equivalences

inf sup E(If-fI5)~inf sup E(IAY - fI7) (5.1)
f feZa(a,R) feZFo(a,R)
~inf sup E(lAquY - fI}) (5.2)

w>0 re gz, (a,R)

hold [55, Theorem 3.2], where the first inf is taken over all possible estimators f and Ag,w =
@Tdiag((l - k%w) k = 1,...,n)@ is the Pinsker filter in the discrete cosine basis. In simple
words, this implies that the (asymptotically) minimax estimator can be chosen from the quite
narrow class of linear estimators with Pinsker’s filter. However, it should be emphasized that the
minimax linear estimator depends on the parameters @ and R, that are generally unknown. An
(adaptive) estimator, that does not depend on (a, R) and is asymptotically minimax over a large
scale of Sobolev ellipsoids has been proposed by Efromovich and Pinsker [26]. The next result,
that is a direct consequence of Theorem 1, shows that the EWA with linear constituent estima-
tors is also asymptotically sharp adaptive over Sobolev ellipsoids.

PROPOSITION 5. Let A = (@, w) € A =R and consider the prior

2n;a/(2a+1)

n(dA) = e “daduw, (5.3)

(1 + n;a/(2a+1)w)3

IThe results of this section hold true not only for the discrete sine transform, but for any linear transform 2 such
that 22T =279 =n"11,,,.
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where ngy = nlo?. Then, in model (1.1) with homoscedastic errors, the aggregate f'EWA based on the
temperature 3 = 80° and the constituent estimators faw=AaqwY (With Agy being the Pinsker
filter) is adaptive in the exact minimax sense® on the family of classes {%g(a,R): @ > 0,R > 0}.

It is worth noting that the exact minimax adaptivity property of our estimator fEWA is achieved
without any tuning parameter. All previously proposed methods that are provably adaptive in
exact minimax sense depend on some parameters such as the lengths of blocks for blockwise
Stein [16] and Efromovich-Pinsker [27] estimators or the step of discretization and the maximal
value of bandwidth [17]. Another nice property of the estimator f'EWA is that it does not require
any pilot estimator based on the data splitting device [25, 58].

We now turn to the setup of heteroscedastic regression, which corresponds to ill-posed inverse
problems as described in Section 3. To achieve adaptivity in the exact minimax sense, we make
use of f‘GEWA, the grouped version of the exponentially weighted aggregate. We assume hereafter
that the matrix X is diagonal with diagonal entries o1,...,0, satisfying the following property:

do4,7y>0 such that ai = O'i kzy(l +0p(1)) as k — oo. (5.4)

This kind of problems arise when T is a differential operator or the Radon transform [14, Section
1.3]. To handle such a situation, we define the groups in the same spirit as the weakly geomet-
rically increasing blocks in [15]. Let v = v,, be a positive integer that increases as n — oo. Set

pn=v,"? and define

1+vy,)/ =1, i=1,2,
j_{( ) j 55

Tis1+ Vnpn(L+pn) 2, j=3,4,...,

where | x| stands for the largest integer strictly smaller than x. Let m be the smallest integer j
such that T; = n. We redefine T;,4+1 =n and set B; ={T;+1,...,Tj} forall j=1,...,m.

PROPOSITION 6. Let the groups By, ..., B;, be defined as above with v,, satisfyinglogv,/logn — oo
andv, —ocoasn—oo. Let A= (a,w)EN = [R%r and consider the prior

2n—a/(2a+2y+1)

n(dA) = e *dadw. (5.6)
(1 + p—a/Qa+2y+1) w)3

Then, in model (1.1) with diagonal covariance matrix £ = diag(o;1 < k < n) satisfying condition
(5.4), the aggregate f ., based on the temperatures fj = 8max;es; 0? and the constituent estima-
tors f o 1 = Aa,wY (With Aq,y being the Pinsker filter) is adaptive in the exact minimax sense on
the family of classes {% (a,R) : a > 0, R > 0}.

Note that this result provides an estimator which atteins the optimal constant in the minimax
sense when the unknown signal lies in an ellipsoid. This property is possible because of the fact
that the minimax estimators over the ellipsoids are linear. For other type of subsets of R", such
as hyper-rectangles, Besov bodies and so on, this is not true anymore. However, as proved by
Donoho, Liu and MacGibbon [24], for orthosymmetric quadratically convex sets the minimax
linear estimators have a risk which is within 25% of the minimax risk among all estimates. There-
fore, following the approach developed here for the set of ellipsoids, it is also possible to prove
that the aggregate GEWA can lead to an adaptive estimator whose risk is within a factor 5/4 of
the minimax risk, for example, for a broad class of hyperrectangles.

2see [55, Definition 3.8]
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(a) Test signals in Experiment I (b) Test signals in Experiment II

FIG 3. Test signals used in our experiments: Piece-Regular, Ramp, Piece-Polynomial, HeaviSine, Doppler and Blocks. (a)
non-smooth (Experiment I) and (b) smooth (Experiment II).

6. Experiments. In this section we present some numerical experiments on synthetic data, by
focusing only on the case of homoscedastic Gaussian noise (X = 0%1I,,x,) with known variance.
Following the philosophy of reproducible research, a toolbox is made available freely for down-
load at the address http://imagine.enpc.fr/~dalalyan/AffineAggr .html.

We evaluate different estimation routines on several 1D signals, introduced by Donoho and John-
stone [22, 23] and considered as a benchmark in the literature on signal processing. The six sig-
nals we retained for our experiments because of their diversity are depicted in Figure 3. Since all
these signals are nonsmooth, we have also carried out experiments on their smoothed versions
obtained by taking the antiderivative, see Figure 3. In what follows, the experiment on nons-
mooth signals will be referred to as Experiment I, whereas the experiment on their smoothed
counterparts will be referred to as Experiment II. In both cases, prior to applying estimation rou-
tines, we normalize the (true) sampled signal to have an empirical norm equal to one and use
the Discrete Cosine Transform (DCT) denoted by 6(Y) = (61 (Y), ... ,Bn(Y))T.

The four estimation routines—including the EWA—used in our experiments are detailed below:

Soft-Thresholding (ST) [22]: For a given shrinkage parameter ¢, the Soft-Thresholding estimator
of the vector of DCT coefficients 8 (f) is defined by

O = sgn (01 (V) (10c (V) - 01), . 6.1)

In our experiments, we use the threshold minimizing the estimated unbiased risk defined
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via Stein’s lemma. This procedure is referred to as SURE-shrink [23].

Blockwise James-Stein (BJS) shrinkage [12]: The set of indices {1,---, n} is partitioned into N =
[n/log(n)] non-overlapping blocks By, By, -- By of equal size L. (If n is not a multiple of N,
the last block may be of smaller size than all the others.) The corresponding blocks of true
coefficients g, (f) = (0,(f)) jep, are then estimated by:

0, (Y), k=1,---,N (6.2)

+

b - 1_/1L02
U s

where 0p, (Y) are the blocks of noisy coefficients, Si = ||93k(Y)||§ and A = 4.50524 as sug-
gested in [12].

Unbiased risk estimate (URE) minimization [17, 33] with Pinsker’s filters: This method consists
in using a Pinsker filter, as defined in Section 5 above, with a data-driven choice of param-
eters ¢ and w. This choice is done by minimizing an unbiased estimate of the risk over a
suitably chosen grid for the values of @ and w. Here, we use geometric grids ranging from
0.1 to 100 for @ and from 1 to n for w. Thus, the bi-dimensional grid used in all the experi-
ments has 100 x 100 elements. We refer to [17] for the closed-form formula of the unbiased
risk estimator and further details.

EWA on Pinsker’s filters: We consider the same finite family of linear smoothers—defined by
Pinsker’s filters—as in the URE routine described above. According to Proposition 1, this
leads to an estimator which is nearly as accurate as the best Pinsker’s estimator in the given
finite family.

To report the result of our experiments, we have also computed the best linear smoother based
on a Pinsker filter chosen among the candidates that we used for defining the URE and the EWA
routines. By best smoother we mean the one minimizing the squared error, which can be com-
puted since we know the ground truth. This pseudo-estimator will be referred to as oracle. The
results summarized in Table 1 for Experiment I and Table 2 for Experiment II correspond to the
average over 1000 trials of the mean squared error (MSE) from which we subtract the MSE of the
oracle and multiply the resulting difference by the sample size. We report the results for o = 0.33
and for n € {28,29,210 211},

Simulations show that EWA and URE have very comparable performances and are significantly
more accurate than Soft-Thresholding and Block James-Stein (see Table 1) for every size n of
signals considered. The improvement is particularly important when the signal has large peaks
(cf. Figure 4) or discontinuities (cf. Figure 5). In most cases, the EWA method also outperforms
the URE, but this difference is much less pronounced. One can also observe that in the case of
smooth signals, the difference of the MSEs between the EWA and the oracle, multiplied by n,
remains nearly constant when 7 varies. This is in perfect agreement with our theoretical results
in which the residual term decreases to zero inversely proportionally to the sample size.

Of course, Soft-Thresholding and blockwise James-Stein procedures have been designed for be-
ing applied to the wavelet transform of a Besov smooth function, rather than to the Fourier trans-
form of a Sobolev-smooth function. However, the point here is not to demonstrate the superior-
ity of the EWA as compared to ST and BJS procedures. The point is to stress the importance of
having sharp adaptivity up to optimal constant and not simply adaptivity in the sense of rate
of convergence. Indeed, the procedures ST and BJS are provably rate-adaptive when applied to
Fourier transform of a Sobolev-smooth function, but they are not sharp adaptive—they do not
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Signal Length: n=512 Noisy function : 6=0.33 and PSNR=11.63

Denoised by EWA (PSNR=23.13) Denoised by BJS (PSNR=21.31) URE (PSNR=22.92), ST (PSNR=18.76)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG 4. This figure presents the results of signal denoising for function Heavisine. The first row is the true signal (left) and
a noisy version of it (right), where the noise is white Gaussian with standard deviation o = 0.33. The second row presents
the denoised signals obtained by EWA (left) and by BJS, ST and URE (right)

attain the optimal constant—whereas the EWA and URE procedures do attain.

7. Summary and future work. In this paper, we have addressed the problem of aggregating a
set of affine estimators in the context of regression with fixed design and heteroscedastic noise.
Under some assumptions on the constituent estimators, we have proven that the EWA with a suit-
ably chosen temperature parameter satisfies PAC-Bayesian type inequality, from which different
types of oracle inequalities have been deduced. All these inequalities are with leading constant
one and with rate-optimal residual term. As a by-product of our results, we have shown that the
EWA applied to the family of Pinsker’s estimators produces an estimator, which is adaptive in the
exact minimax sense.

Although only the case of known covariance matrix is considered in the present work, the results
are easy to extend for handling the more realistic situation where an unbiased estimate %, inde-
pendent of Y, of the covariance matrix X is available. One should merely replace = by £ in the
definition of the unbiased risk estimate (2.6) and leave the remaining steps unchanged. For ex-
ample, when the matrices A, satisfy condition (C), the claim of Remark 4 remains valid and can
be proved along the lines of Appendix A.

Next in our agenda is carrying out an experimental evaluation of the proposed aggregate using
the approximation schemes described by Dalalyan and Tsybakov [21], Rigollet and Tsybakov [48]
and Alquier and Lounici [1], with a special focus on the problems involving large scale data. It will
also be interesting to extend the results of this work to the case of the unknown noise variance in
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n EWA URE BJS ST EWA URE BJS ST
Blocks Doppler
256 0.051 0.245 9.617 4.846 0.062 0.212  13.233 6.036
0.42)  (0.39) (1.78) (1.29) (0.35)  (0.31) (2.11) (1.23)
512 -0.052 0.302  13.807 9.256 -0.100 0.205 17.080 12.620
(0.35)  (0.50) (2.16) (1.70) (0.30)  (0.39) (2.29) (1.75)
1024  -0.050 0.299 19984 17.569 -0.107 0.270  21.862  23.006
(0.36) (0.46) (2.68) (2.17) (0.35) 0.41) (2.92) (2.35)
2048  -0.007 0.362  28.948  30.447 -0.150 0.234 28.733  38.671
(0.42) (0.57) (3.31) (2.96) (0.34) (0.42) (3.19) (3.02)
HeaviSine Piece-Regular
256 -0.060 0.247 1.155 3.966 -0.069 0.248 8.883 4.879
0.19) (0.42) (0.57) (1.12) (0.32) (0.40) (1.76) (1.20)
512 -0.079 0.215 2.064 5.889 -0.105 0.237  12.147 9.793
(0.19)  (0.39) (0.86) (1.36) (0.30)  (0.37) (2.28) (1.64)
1024 -0.059 0.240 3.120 8.685 -0.092 0.291 15.207 16.798
(0.23) (0.36) (1.20) (1.64) (0.34) (0.46) (2.18) (2.13)
2048  -0.051 0.278 4.858  12.667 -0.059 0.283  21.543  27.387
(0.25) (0.48) (1.42) (2.03) (0.34) (0.54) (2.47) 2.77)
Ramp Piece-Polynomial
256 0.038 0.294 6.933 5.644 0.017 0.203  12.201 3.988
0.37)  (0.47) (1.54) (1.20) 0.37)  (0.37) (1.81) (1.19)
512 0.010 0.293 9.712 9.977 -0.078 0.312  17.765 9.031
(0.36) (0.51) (1.76) (1.67) (0.35) (0.49) (2.72) (1.62)
1024 -0.002 0.300 13.656  16.790 -0.026 0.321  23.321 17.565
(0.30) (0.45) (2.25) (2.06) (0.38) (0.48) (2.96) (2.28)
2048 0.007 0312 19.113 27315 -0.007 0.314  31.550  29.461
(0.34) (0.50) (2.68) (2.61) (0.41) (0.49) (3.05) (2.95)
TABLE 1

19

Comparison of several adaptive methods on the six (non-smooth) signals of interest. For each sample size and each
method, we report the average value of MSE —MSE.cle and the corresponding standard deviation (in parentheses),
for 1000 replications of the experiment.

the same vein as in Giraud [31].

In this section we give the detailed proofs of the results stated in the manuscript.

A.l. Stein’s lemma.

APPENDIX A: PROOFS OF MAIN THEOREMS

The proof of our main results rely on the well-known Stein lemma [52, 53]
providing an unbiased risk estimate for any estimator that depends sufficiently smoothly on the

data vector Y. For the convenience of the reader, we recall Stein’s lemma in the case of het-
eroscedastic Gaussian regression.

LEMMA 1. Let Y be random vector drawn form the Gaussian distribution N, (f,Z). If the esti-
A AT A
mator f is a.e. differentiable in Y and the elements of the matrix V- f :=(0;f;) have finite first

moment, then

is an unbiased estimate of r, i.e., Ef =r.

- 2 A 1
F= IIY—fIIfl+ZTr[Z(V-fT)] _ZTI[Z]’
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n EWA URE BJS ST EWA URE BJS ST
Blocks Doppler
256 0.387 0.216 0.216 2.278 0.214 0.237 1.608 2.777
(0.43) (0.40) (0.24) (0.98) (0.23) (0.40) (0.73) (1.04)
512 0.170 0.209 0.650 3.193 0.165 0.250 1.200 3.682
(0.20) 0.41) (0.25) (1.07) (0.20) (0.44) (0.48) (1.24)
1024 0.162 0.226 1.282 4.507 0.147 0.229 1.842 5.043
(0.18) 0.41) (0.44) (1.28) (0.19) (0.45) (0.86) (1.43)
2048 0.120 0.220 1.574 6.107 0.138 0.229 1.864 6.584
0.17) (0.37) (0.55) (1.55) (0.20) (0.40) (1.07) (1.58)
HeaviSine Piece-Regular
256 0.217 0.207 1.399 2.496 0.269 0.279 2.120 2.053
(0.16) (0.42) (0.54) (0.96) 0.27) (0.49) (1.09) (0.95)
512 0.206 0.221 0.024 3.045 0.216 0.248 2.045 2.883
(0.18) (0.43) (0.26) (1.10) (0.20) (0.45) (1.17) (1.13)
1024 0.179 0.200 0.113 3.905 0.183 0.228 1.251 3.780
(0.18) (0.50) 0.27) (1.27) (0.20) 0.41) (0.70) (1.37)
2048 0.162 0.189 0.421 5.019 0.145 0.223 1.650 4.992
(0.15) (0.37) 0.27) (1.53) (0.19) 0.42) (1.12) (1.42)
Ramp Piece-Polynomial
256 0.162 0.200 0.339 2.770 0.215 0.257 1.486 2.649
(0.16) (0.38) (0.24) (1.00) (0.25) (0.48) (0.68) (1.01)
512 0.150 0.215 0.425 3.658 0.170 0.243 1.865 3.683
(0.18) (0.38) (0.23) (1.20) (0.20) (0.46) (0.84) (1.20)
1024 0.146 0.211 0.935 4.815 0.179 0.236 1.547 5.017
(0.18) (0.39) (0.33) (1.35) (0.20) 0.47) (1.02) (1.38)
2048 0.141 0.221 1.316 6.432 0.165 0.210 2.246 6.628
(0.20) (0.43) 0.42) (1.54) (0.20) (0.39) (1.15) (1.70)
TABLE 2

Comparison of several adaptive methods on the six smoothed signals of interest. For each sample size and each
method, we report the average value of MSE —MSE..1e and the corresponding standard deviation (in parentheses),
for 1000 replications of the experiment.

The proof can be found in [55, p.157]. We apply Stein’s lemma to affine estimators f 1=ArY +b,y,
where Ay is an n x n deterministic real matrix and by € R” is a deterministic vector. We get that

X R 2 1
AP = 1Y — fHll5 + = Tr[ZAy] — = Tr[Z]
n n
is an unbiased estimator of the risk

~ 1
ra=Ellfy— FI5]1 = 1Ay = Lixn) £ + b2l + ZTr[AAZAIL

A.2. An auxiliary result. Prior to proceeding with the proof of main theorems, we prove an
important auxiliary result which is the central ingredient of the proofs for our main results.

LEMMA 2. Let assumptions of Lemma 1 be satisfied. Let {fAA : A € A} be a family of estimators of f
and {f) : A € A} a family of risk estimates such that the mapping Y — (f,,71) is a.e. differentiable
forevery A e A. Let fimb be the unbiased risk estimate of f, given by Stein’s lemma.

1. For every m € 2\ and for any B > 0, the estimator fEWA defined as the average of f' 1 W.ILL to
the probability measure

A(Y,dN) =0(Y,)n(dN) with 6(Y,A) x exp{—niy(Y)/B}
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Signal Length: n=1024 Noisy function : 6=0.33 and PSNR=17.44

S

=)

Denoised by EWA (PSNR=24.84) Denoised by BJS (PSNR=22.91) URE (PSNR=24.75), ST (PSNR=20.38)
BJS
3 3 —— v
2
1
0
-1
0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1

FIG 5. This figure presents the results of signal denoising for function Piece-Regular. The first row is the true signal (left)
and a noisy version of it (right), where the noise is white Gaussian with standard deviation o = 0.33. The second row
presents the denoised signals obtained by EWA (left) and by BJS, ST and URE (right)

admits )
A A n
Foan= | (P =1y = Frala— =
EWA fA ( 2 f/l fEWA n ﬁ
as unbiased estimator of the risk.
2. If furthermore fy = #3"°, YA € A and [, (VAAIZ(f) = Fr))nft(dA) = —a [y | f1 = Foull27(dA)
for some constant a > 0, then for every f = 2a it holds that

(Vy AAIZ(F = Frag) ) @D

A . N K (p,T)
o= f121 < inf { [ €l plan + X2 A
peZ@a LJA n
PROOE. According to the Stein lemma, the quantity
A 2 A 1
Pown = 1Y = Fuall + “THE(V - fo 00) = — Tr(2] (A.2)

is an unbiased estimate of the risk r,, = E(|| f‘EWA — f12). Using simple algebra, one checks that
1Y = Frnl = fA (17 = Fal2 = 1Fy = Fal) 2@, (A.3)
By interchanging the integral and differential operators, we get the following relation: 9, fEWA’ i=

Sa{(0y, fa,; (X)) 0(Y, 1) + fa, ;(¥) (0,,0(Y, 1))} w(dA). This equality, combined with Equations (A.2)
and (A.3) implies that

N N 2 N
fEWA:fA(fimb—||fA—fEWA||fl)ﬁ(d/1)+;fATr[ZfAVye(Y,}L)T]n(d}L).
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Taking into account that differentiation and integration can be interchanged, f A f'EWA(Vyﬁ(Y, )L))Tn(d A) =
FeunVy ([, 0(Y, M)7(dA)) =0, and we come up with the following expression for the unbiased risk
estimate:

Pown = fA (A0 = 1 = £ 1%+ 20V 10g B Z(Fr = Frp)) ) 7(AA)

= [ (B = 1Fy = Fua b =208 Wy RIZ (G = o)) (AN
This completes the proof of the first assertion of the lemma.
To prove the second assertion, let us observe that under the required condition and in view of
the first assertion, for every f = 2a it holds that fuy, < [j A7 (dA) < [} FAR(dA) < [} FARR(dA) +
glf (7, ). To conclude, it suffices to remark that 7 is the probability measure minimizing the

criterion [, #3p(dA) + %]f (p, ) among all p € 2. Thus, for every p € 22y, it holds that

fEWASf f}LP(d/U+éJ£/(PJT)-
A n

Taking the expectation of both sides, the desired result follows. O

A.3. Proof of Theorem 1. In what follows, we use the matrix shorthands I = I,,x,, and Ap, =
Sy ArO(A)7(dA). We apply Lemma 2 with 7 = f;‘nb. To check the conditions of the second part,
note that in view of Equations (2.4) and (2.6), as well as the assumptions AI =Ajyand Ay by =0,
we get

2 2 2 2
A n n n n

Recall now that for any pair of commuting matrices P and Q the identity (/ -P2=1U- Q)2 +2(I -
%3) (Q—P) holds true. Applying this identity to P = Ay and Q = Ay, we get the following relation:
(U= AD?YIZ(Ar = Ap) Y, = (I = Ap) 2 Y [Z(Ag — Ap) ¥y = 2( (1= 228 ALY (A — AR Y| Z (Agyn —
Ap)Y),,. When one integrates over A with respect to the measure 7, the term of the first scalar
product in the RHS of the last equation vanishes. On the other hand, positive semi-definiteness of
matrices Ay implies the one of the matrix Ag,, and, therefore, ((I - W)(AEWA —A)Y|Z(Apa —

ANY), < ((Apwa — AN Y |Z(Apwa — A1) Y),,. This inequality implies that

[\<Vfgnb|z(fl _fEWA)>nﬁ(dA) z _411‘\ ”21/2(]@& _fEWA)Hglﬁ(d/l)‘

Therefore, the claim of Theorem 1 holds true for every g = 8||Z|.

A.4. Proof of Theorem 2. Let now f'/l = A, Y + by with symmetric Ay < I,x, and by € Ker(Ay).

ACCOI‘ding to the deﬁnition:
~adj ~unb 1 2

A

One easily checks that r;dj = f}{nb for every A and that
fA<WZ‘“IZ(ﬁ ~ Frn)nf1(dA) = fA @Y = FOIZ(F) ~ o)) nft(dA)

-2 fA I2V2(F, - Fud I24(dA).

Therefore, all the conditions required in the second part of Lemma 2 are fulfilled as soon as 8 =
4[IZ|ll. Applying this lemma, we get the desired result.



AGGREGATION OF AFFINE ESTIMATORS 23

APPENDIX B: PROOFS OF PROPOSITIONS

B.1. Proof of Proposition 2. It suffices to apply Theorem 1 and to bound from above the RHS
of inequality (2.7)

EQlf.— fI2) < inf ( f (A= 20+ 72, p(dA)+EJ(p,n))
p€@/\ A n

Then, the RHS of the last inequality can be bounded from above by the minimum over all mea-
sures having py, -,(1) = llBl10 (ty) (A)/Leb(By, (7o) as density. Assume moreover that Ay is such that
B),(To) < A, then using the Lipschitz condition on r, the bound on the risk becomes

E(l fo — FI2) < inf f (174 = 72,1472, ] Pag.z, (AA) + P J{(mo,,o,n))
;‘,0€A A n
By, (To)cA
A()GA A n
By (To)cA
E(l e — fII2) < inf |ra, +Ly7o+ P H (Pag.er ) (B.1)
;L0€A n
By (To)cA

Now, since Ay is such that By, (7o) < A, the measure p,,;,(1) dA is absolutely continuous w.r.t.
the uniform prior m over A and the Kullback-Leibler divergence between these measures equals
log{Leb(A)/Leb(By, (10))}. By the simple inequality ||x[|l5 < M| x|, for any x € R, one can see

2'[0

that the Euclidean ball of radius 7( contains the hypercube of width NI So we have the following

lower bound for the volume B): Leb(B o (TO)) > (%)M . By combining this with inequality (B.1)

the results of Proposition 2 is straightforward.

B.2. Proof of Proposition 3. We begin the proof as for the previous proposition, but pushing
the development of the function A — rj up to second order. So, for any 1* € R™, we have

Elf,,.— fl2< inf (”**f (VI (A=A") + A=A T . (A-1%)) pA*(dﬂmé,zf(m*,m)
A*eRM A n

By choosing pj»(A) = m(A—A*) for any A € R, the second term in the last display vanishes since

the distribution 7 is symmetric. The third term is computed thanks to the moment of order 2

of a scaled Student ¢(3) distribution. Recall that if T is drawn from the scaled Student #(3) dis-

tribution, its distribution function is u — 2/[n(1 + ¥®)?], and that ET? = 1. Thus, we have that

f A /lfn(/l)dﬂt = 72, We can then bound the risk of the EWA estimator by

[E(”fEWA _f”?z) = Ainf rax +TI‘(./%)T2 + g %(P,l*,ﬂ')) (B.2)
*€RM

So far, the particular choice of heavy tailed prior has not been used. This choice is important to
control the Kullback-Leibler divergence between two translated versions of the same distribution

M (12+A§)2
‘Z(p‘*’”):fAlog jo1 @2+ (A =152 Px-(dd)
M 2412
J{(pm,n)=2j2:1 Alog m]pm(dﬂ).
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We bound the quotient in the above equality by

T2+ A2 | 214 =47 A A
Tr (AR (AR T (A2
T2+ A% A% (A%2 A5 2
J J J J
—— <14+ |— — | <|1+|—]]| .
Py e r) <( iE )

Since the last inequality is independent of A and p,- is a probability measure, the integral disap-
pears in the previous bound on the Kullback-Leibler divergence. So we eventually get

4)
i)

Combining this with Inequality (B.2), leads the desired result.

M
H(pr,m)<4) log(l+

j=1

B.3. Proof of Proposition 4. To simplify the notation, we set o = (071,...,0,), the vector contain-
ing the standard deviations of the errors ¢;. Let 7 be a small positive number, the precise value of
which will be given later. Let Ao = (ao, by, ko) € [7,1 - 712 x {1,..., n} be some fixed element. Let us
define po(dA) = jay-1,a0+71(@ Uipy—1,b,+71 (D) Uk = ko) (27) > d adb.

Note that for any A = (a, b, k), the risk of the estimator A, Y is

k n
Z (a- oz)zfi2 + azo?) + % Y (a- b)zfl-2 + bzaf) )

i=k+1

1
n;

In particular, the difference between the risks rj and ry—for two different parameters A = (a, b, k)
and Ay = (ay, b, kp) such that k = kg is the same in the two cases—can be rewritten as follows:

1 k
TA—TA,=— Z [Z(ao -a){1- ao)fl.2 - ao(f?} +(a— 010)2{fi2 +0?}]

o1 [Z(bo—b){(l bo) 2 — boor2} + (b — bg)X{ f2 +a}]

nizk

So, if we integrate w.r.t. the measure po(dA), the terms that are linear in a—ag and b—b, disappear
and we get

d 2
f(m—mo)p(dm Z{f +0%) uzz—fz%(llflliﬂlallf,). (B.3)

Concerning the Kullback-Leibler divergence between pg and x, it can be computed as follows:

po(da,db, k))
£lpm = fo (ﬂ(da ab, k) ) Potdadb.k)

dadb

ap+T b0+T
f f log ll[ao Ta0+1](a)]l[bo Tb0+r](b))__
bo- 2T 21

= log( ) (B.4)
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Now we can use Equation (2.7) with our choice for py and z. In view of the computations we
have just done, we get

IA

EU o= FI2) inf ( fA - p(d/l)+§l/(p,7r))

pE'@A

f rapo(dA) + EJ«/(POJT)
A n

IA

B n
A, +f/\(m —72,)Po(dA) + ;log(m)

2(IfI5+lol%) B n
= I’AO‘F n3 n +;log(m) (B.5)

The last expression, considered as a function of 7, admits as global minimum rfnin =3B/n(l fI%+
IIUII%). Replacing this value in (B.5), we get the risk bound:

2 2 2
s e . B 212+ 112)
Bl foay — FI12) <EIF 2, — FI12)+ ;{1 +log( 125 )} (B.6)

Now, the desired result follows from the obvious equality nllcr||,21 =Tr(X).

B.4. Proof of Proposition 5. We assume, without loss of generality, that the matrix n'/2% coin-
cides with the identity matrix. First, let us fix ap > 0 and Ry > 0, such that n~12 feF(ay, Ry) and
define Ay = (g, wg) € A with wy chosen such that the Pinsker estimator f a,wo 1S MiNimax over
the ellipsoid & (ay, Ry).

In what follows, we set n, = n/g? and denote by p, the density of & w.r.t. the Lebesgue mea-
sure on R2: py(a, w) = e %ny*" @y (wny* V) where p,, is a probability density function
supported by (0,00) such that [ up,,(u) du = 1. One easily checks that

fRzap,,(a, w)dadw =1, fszpn(a, w)dadwsn},’z. (B.7)

Let 7 be a positive number such that T < min(1, @/ (2log wp)) and choose pj, . as a transla-
tion/dilatation of 7, concentrating on Ay when 7 — 0:

A—=Apg\dA
Pay,r(dA) = pn( O),—z-
In view of Theorem 1,
[E(IIwaA_fllfl) =T), +fR2 ITa,w = Tag,wy| PAy,s (AA) + gﬂ(pao,pﬂ)- (B.8)

Let us decompose the term rg,,y — I'qy,w, INtO tWO pieces: rq,w — Tag,wy = ra,w = Ta,wo} + ra,wy —
Tayw,) and find upper bounds for the resulting terms. With the choice of estimator we did, the
difference between the risk functions at (a, w) and («, wy) is:

n
naw—Tauw) = Y. (1= k¥ w)y —1)* = ((1 - k% wo)s —1)°] f2
k=1
n
+ 3 (=K% w),)? = (= k% wp) )]0
k=1
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Since the weights of the Pinsker estimators are in [0, 1], we have
n
M Ta,w—Tauwl <2 Y (FE +02) |1 =k w): — 1= k% wo)+| . (B.9)
k=1

For any x, y € R, the inequality |x; — y+| < |x — y| is obvious. Combined with ay < ¢ and wy < w,
we have that

Kk k“ k* k“ w— wo
'(1——) —(1——) < | = ey = . (B.10)
w’+ Wo’+ w Wwo Wwo
By virtue of Inequalities (B.9) and (B.10) we get
LA o (w—wp) 2, W—Wp
\Fa,w = Taywyl <2071 Y (ff +09)———— <2(Ro+0 )T' (B.11)
k=1 0

Similar calculations lead to a bound for the other absolute difference between risk functions:

N 2, 2 KT
|ra,w0_ra0,w0| < 2n Z(fk+a )711%“05100}
k=1 Wo
a—ay
< 2(Ro+0)(w," -1). (B.12)

Recall that we aim to bound the second term in the RHS of (B.8). To this end, we need an accurate
upper bound on the integrals of the RHSs of (B.11) and (B.12) w.r.t. the probability measure py, ;.
For the first one, we get

IN

f|ra,w_ra,wo|p/lo,r(d/1) 2(R0+02)w(;1[|%2(w_wO)p/lo,T(dA)

IA

4nl?wy't(Ry+0?). (B.13)

Similar arguments apply to bound the integral of the second difference between risk functions:

a-ag
2(Rg + az)fR2 (w,™ —1)pa,,:(dA)

27(Ry +0?)log wy

IA

[;2 |rlZ,W0 - r(lo,Wo'p/lo,T (dﬂ)

ap—T1logwy
4T (Ry + Uz)aal log wy, (B.14)

IA

where we used the inequality 7 < a(/(2log wy).

The last term to bound in inequality (B.8) requires the evaluation of the Kullback-Leibler diver-
gence between p,, ; and 7. It can be done as follows:

)
K (pa,oym) = f 0 e ) pay @A)
Por 8! e~ pulti) 2)Paus
— pll/( ;A/)(;alf?) )
a—aqop n T
= a— +log 2 P2, (dA) —2log(t)
fmz{ T pw(naTwam)} .
3
< a0+(r—1)+jl;2 log(l+W) Pao,r(dA) —2log(T).
+ g
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where the third equality is derived thanks to Eq. (B.7) and the obvious relation ||py lloo = 2. Now,
making the change of variable w = wg +7n%®**Vy and using the fact that wq +7n%@**Vy
3“2‘””(:,0 +u), we get

IA

w
fRZ log(1+m) P, (dA) 3[ log (1 + wo + u)pw(wdu
o' +

A

< 3log(1+w0+f upw(u)du)
R
3log(2 + wy).

Eventually, we can reformulate our bound on the risk of the EWA given in (B.8), leading to

1/2 2+WO

f 1 80%(ay+3lo
[E(||fFWA—fIIi)Sm0+4r(RO+az)("” + Og”’O) ? (o +3log (= ))'
A Wo (o 4))

(B.15)
n

To conclude the proof of the proposition, we set

Qo
T= 3 , LU()—(
ns + ag +2logwy

Ro(ao+1)2ap +1) ) TagrT _ ZagiT
ng° .

@
According to Pinsker’s theorem,

max =(1+o0 (1))m1n max [E( ).
feFanky T feF ok I1f =1

In view of this result, taking the max over f € % (ag, Rp) in (B.15), we get

A logn
2 . _ 2 -~
fgl(ach [E(IlfEWA fll,l)S(1+0n(1))m;nf€;1(%§m[E(llf flln)+0( - )

This leads to the desired result in view of the relation

_2ap N
liminfmin max nmoﬂ[E(IIf—fIIf,) > 0.

A

n—oo f fE aOr

B.5. Proof of Proposition 6. It is clear that all the conditions required in Setting 1 are fulfilled
and we can apply Theorem 3 that yields:

[E(”fGEWA_f”%l) = Z il‘lgg (LE||fi_f]||ip](dA)+ 'B_n] 'Z(pj'n) . (B.16)

j=1Pi€FA

Let now Ag = (g, wy) be a pair of real numbers such that the estimator f 2, is minimax over the
Sobolev ellipsoid % (ap, Ro). In what follows, we denote by p; the density of 7 w.r.t. the Lebesgue
measure on [Ri: prla, w) = e‘“n_“/(z"‘*z””pw(wn_“/(2“+2Y+l)), where p,, is a probability den-
sity function supported by (0,00) such that [ up,, (1) du = 1. Let T be a positive number such that
7 < min(l, ap/(2log wp)) and choose pj, . as a translation/dilatation of 7, concentrating on Ay
when 7 — 0:

Payr(dA) = pn( A-2Ao ) da

T2
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Let my be a positive integer smaller than m the precise value of which will be given later. As an
immediate consequence of (B.16) we get:

my N X . m N i
E(I fomn — F17) = ( f EIfS - F712 pa, - (dA) + &Jﬁ(mo,,,m) + Y | EIfy - r@n.
j=1\JA n j=mo+1

Repeating the arguments of the proof of Proposition 5, one can check that

Tm0+1
I’;LO+4T(R0+I’l_1 Z 0?)(n1/2w51+a5110gw0), (B.17)
i=1

IA

my N X
S| EIfL = £12 pag - (dA)
j=1/a

2+ wy
K (Pa,m) < ap+3log( )- (B.18)
It is obvious that
TmO+1 2 2 Tm0+1 9 2 ot l 9 o 1
Y o07<Cos Y i 7’SCU*THZ)Jrl <Coin“*',
i=1 i=1

Furthermore, using the definition of weakly geometrically increasing groups, we get that
L j j
Evn(l +pn) =Tjs1=va(l+pp).

This implies that
mgy 2 9 mgy 5 9 2 5 2
Y Y Y
E 1,6]- <Co; E 1 T].Jrl < C(f*monOJrl < CoymyTy,.
1= 1=

Let now mg be chosen in such a way that Ty, < n2y+0.9/@ao+2y+1) ij; ., The condition logn =

o(logv,,) implies that myq T,Z,Z) = 0(T317;(2Y+1)/(2“0'5)) = o(n@?r+D/@aoty+l)) Therefore, setting 7 =

a .
Fraorologuy it holds that
3 F_ i) Pi =2/ QRap+2y+])
Z A[E”f/l f ”np/lo,‘l:(dA)'F " ‘Z’/(p/lo,‘[»”) =o(n ),
=1

as n — oo. Since the minimax risk over & (o, Ro), as well as r,, is on the order of n~2¢0/ (2o +2y+1),

we get

m . .
E(I foer = F12) s 12,1+ 0+ Y | EIfL - FIIA7@N).

Jj=mo+1
Using similar arguments, one checks that the last sum is also o(n~2%/2®+2Y+D) and the desired

result follows.
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