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Mechanical effect of adsorption
Carbon sequestration and swelling of coal
Laurent BROCHARD

Université Paris-Est. Laboratoire Navier (UMR CNRS 8205). Ecole des Ponts ParisTech

CONTEXT - CARBON SEQUESTRATION AND SWELLING OF COAL

In most scenarios for
stabilization of atmospheric
greenhouse gas
concentrations [...] CCS
contributes 15 - 55% to the
cumulative mitigation effort
worldwide

(From: IPCC report on Carbon Capture and Sequestration (2005))
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60000 Sequestration in coalbeds is promising
(long term storage is safe and natural
gas can be recovered, which improves
the financial viability), but it is affected
by a permeability issue. The injection
pilots have encountered an important
loss of permeability of the reservoir,
after a few months of injection.
Left: case of the Allison Unit, San Juan
Basin (NM), US DOE.

(adapted from Pekot & Reeves (2002))

Cause: coal swells more in a CO2 atmosphere than in a CH4 atmosphere
Experiment:

inject either CO2 or CH4 in a

coal sample free of stress
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(adapted from Ottiger et al. (2008))

Conventional poromechanics fails to explain the swelling
Helmholtz free energy of the solid matrix of a saturated isotropic
porous medium:

fsolid =
1
2
(
K + b2N

)
ε2 − bNεϕ +

N
2
ϕ2 +

∑
i ,j∈{1,2,3}

G
2

e2
ij

where:
ε is the volumetric strain,
ϕ the change of porosity,
G the shear modulus,
and N the Biot modulus.

eij the deviatoric strains,
K the bulk modulus,
b the Biot coefficient,

The volumetric stress is obtained with the state equation:

σ =
∂fsolid

∂ε

∣∣∣∣
ϕ,eij

= K ε− bP

(Coussy (2010))

Unjacketed experiment:
PCO2 small PCO2 high

Conventional poromechanics
predicts a shrinkage, and the
same whatever the gas!

σ = −P ⇒ ε = −1− b
K

P < 0

Objective: Understand the physics of swelling and predict the permeability loss

CONVENTIONAL POROMECHANICS EXTENDED TO SURFACE EFFECTS

Bulk density
Γ = Ns /A
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Contrary to CO2 and CH4, helium behaves as predicted by poromechanics.
The difference stems from the adsorption (low for Helium, high for CO2 and
CH4) which may have an impact on the mechanics of a solid, since it modifies
the fluid-solid interface energy γFS (Gibbs adsorption equation, at fixed
temperature and interface area): dγFS = −Γdµ. The mechanical impact of
adsorption can be sketched in the case of a thin plate:

Adsorbed layer

Helmholtz free energy of the (solid matrix + interface):
fsolid =

1
2
(
K + b2N

)
ε2 − bNεϕ +

N
2
ϕ2 +

∑
i ,j∈{1,2,3}

G
2

e2
ij +γs

s the specific surface., and γFS the fluid-solid interface energy.

σ = K ε− bP+σ̃s
∂s
∂ε

∣∣∣∣
P

where σ̃s = γ + s
∂γ

∂s
is the interface stress.

(Vandamme et al. (2010))

Predicts a possible swelling,
specific to each fluid:

ε = −1− b
K

P−∆σ̃s

K
∂s
∂ε

∣∣∣∣
P

(1)

with ∆γ = −
∫ µ
µ0

(
NEx

A dµ
)

and

∆σ̃s = ∆γ + s∂∆γ
∂s
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CO2 and CH4 density profiles on the
surface of coal matrix were obtained by
molecular simulation.The swelling
predicted by the model (Equation 1) is
compared to the experimental swelling.
The model does not capture the
experimental swelling
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(Experimental data from Levine (1996))

POROMECHANICS OF NANOPORE ADSORPTION

Explanation: Adsorption occurs also in the nanopores of the solid matrix.

Guideline for the poromechanics of nanopore adsorption: Use known and measurable quantities
only. Questionable quantities (porosity, specific surface) should not intervene.

Behavior law of a porous solid subjected to
a fluid under any form (bulk, surface
adsorption, nanopore adsorption...)

σ =
dfS

dε
−
∂

∂ε

(∫ µ

−∞

N
V0

dµ
)∣∣∣∣

µ

(2)

V0 is the volume of the porous solid under unstressed
conditions,
N is the number of fluid molecules whatever their state
(adsorbed in nanopores, on surfaces, bulk...).
fS = FS/V0 and FS is the free energy of the sole solid,
that is when there is no fluid molecule in the pores.
fS = 1

2K ε2 for an elastic solid.

Requires to know the adsorbed amount as a function of both µ and ε.

Case of a 1D chain subjected
to fluid adsorption
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The uneven adsorption behavior can be explained by the pore commensurability
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The excess stress directly computed (virial
estimate) and the excess stress predicted

by the proposed thermodynamics
(Equation 2) are consistent.

σ − σ (f = 0) = − ∂

∂ε

(∫ µ

−∞

N
V0

dµ
)∣∣∣∣
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Coal is a disordered nanoporous matrix.

What about a disordered chain?
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The adsorption behavior in the
disordered chain is ordered!

1 The amount adsorbed is a linear function
of strain,

2 and the slope is proportional to the
number of fluid atoms.

Simplified model

σ =
dfS
dε
− C

∫ µ

−∞

N (ε = 0, µ)

V0
dµ

Swellings predicted with the
simplified model are satisfying.
Perspective: predict the reservoir permeability
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(Experimental results from Ottiger et al. (2008))
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