
HAL Id: hal-00693404
https://enpc.hal.science/hal-00693404v1

Submitted on 2 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temperature Effects on the Unsaturated Permeability of
the Densely Compacted GMZ01 Bentonite under

Confined Conditions
Wei-Min Ye, Min Wan, Bao Chen, Yong-Gui Chen, Yu-Jun Cui, Ju Wang

To cite this version:
Wei-Min Ye, Min Wan, Bao Chen, Yong-Gui Chen, Yu-Jun Cui, et al.. Temperature Effects on the
Unsaturated Permeability of the Densely Compacted GMZ01 Bentonite under Confined Conditions.
Engineering Geology, 2012, 126, pp.1-7. �10.1016/j.enggeo.2011.10.011�. �hal-00693404�

https://enpc.hal.science/hal-00693404v1
https://hal.archives-ouvertes.fr


 1

Temperature Effects on the Unsaturated Permeability of the Densely 1 

Compacted GMZ01 Bentonite under Confined Conditions 2 

 3 

W. M. Y E a,b,*, M. WAN a, B. CHEN a，Y. G. CHEN a，Y. J. CUI a,c, J. WANGd 4 

 a. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji 5 

University, Shanghai 200092，China   6 

b. United Research Center for Urban Environment and Sustainable Development, the Ministry of 7 

Education, Shanghai 200092，China 8 

c. UR Navier, Ecole des Ponts ParisTech, France  9 

d. Beijing Research Institute of Uranium Geology, Beijing 100029，China 10 

 11 

*To whom correspondence and reprint requests should be addressed; Tel.: +86 21 6598 3729; Fax: 12 

+86 21 6598 2384, E-mail: ye_tju@tongji.edu.cn 13 

 14 



 2

Abstract 15 

In this study, temperature controlled soil-water retention tests and unsaturated hydraulic conductivity 16 

tests for densely compacted Gaomiaozi bentonite - GMZ01 (dry density of 1.70 Mg/m3) were 17 

performed under confined conditions. Relevant soil-water retention curves (SWRCs) and unsaturated 18 

hydraulic conductivities of GMZ01 at temperatures of 40°C and 60°C were obtained. Based on these 19 

results as well as the previously obtained results at 20°C, the influence of temperature on 20 

water-retention properties and unsaturated hydraulic conductivity of the densely compacted 21 

Gaomiaozi bentonite were investigated. It was observed that: (i) water retention capacity decreases as 22 

temperature increases, and the influence of temperature depends on suction; (ii) for all the 23 

temperatures tested, the unsaturated hydraulic conductivity decreases slightly in the initial stage of 24 

hydration; the value of the hydraulic conductivity becomes constant as hydration progresses and 25 

finally, the permeability increases rapidly with suction decreases as saturation is approached; (iii) 26 

under confined conditions, the hydraulic conductivity increases as temperature increases, at a 27 

decreasing rate with temperature rise. It was also observed that the influence of temperature on the 28 

hydraulic conductivity is quite suction-dependent. At high suctions (s > 60 MPa), the temperature 29 

effect is mainly due to its influence on water viscosity; by contrast, in the range of low suctions (s < 30 

60 MPa), the temperature effect is related to both the water viscosity and the macro-pores closing 31 

phenomenon that is supposed to be temperature dependent. 32 

 33 
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1 Introduction  36 

In a conceptual multi-barrier disposal radioactive waste repository (Figure 1), significant 37 

Temperature- Hydraulic-Mechanical (THM) phenomena take place in the engineered barrier and in 38 

the near field due to the combined actions of heating and hydration (Sanchez et al, 2004). The 39 

hydraulic property of the compacted bentonite used as engineered barrier material is one of the key 40 

properties for the design of such a disposal system. This explains the large number of studies that 41 

have been performed in this area: Dixon et al (1987), Nachabe (1995) and Liu and Wen (2003) tested 42 

the permeability of saturated compacted bentonites and analyzed the related influencing factors; Villar 43 

(2000, 2002) and Komine (2004) reported different empirical relations between dry density and 44 

saturated permeability of compacted benonite; Komine (2004) and He and Shi (2007) predicted the 45 

saturated permeability of bentonite based on the changes in porosity. For the unsaturated bentonite, 46 

after an investigation to the unsaturated permeability of the mixture of the Kunigel V1 bentonite and 47 

Hostun sand under confined conditions, Loiseau (2001) found that for suction lower than 23MPa, the 48 

unsaturated permeability increases with suction decrease, while for suction higher than 23MPa, the 49 

unsaturated permeability decreases as suction decreases. Under both confined conditions and 50 

unconfined conditions, Cui et al. (2008) tested the unsaturated permeability of the mixture of 51 

Kunigel-V1 bentonite/Hostun sand based on the instantaneous profile method, and found that as 52 

suction decreases, the unsaturated permeability decreases to a certain value and then turns to increase.  53 

Cho et al. (1999) reported that the influence of temperature on the permeability of bentonite is 54 

mainly because the intrinsic permeability, viscosity and density of water are influenced by 55 

temperature. Changes in viscosity of water with temperature have been found to be the most 56 

important mechanism (Towhata et al, 1993; Cho et al, 2000; and Villar and Lloret, 2004). 57 

GMZ bentonite has been selected as the potential buffer/backfill material for the construction of 58 

the engineered barrier in the Chinese deep geological disposal program for high level radioactive 59 

nuclear waste, thanks to its high montmorillonite content, high cation exchange capacity (CEC), large 60 

specific surface and other desirable properties (Liu and Wen, 2003). Studies on the mineralogy and 61 

chemical composition, mechanical properties, hydraulic behavior, swelling behavior, thermal 62 

conductivity, microstructure and volume change behavior of the GMZ bentonite have been conducted 63 

over years (Ye et al., 2010b). The investigation of the hydraulic properties of the GMZ bentonite has 64 

been the gravity center of the recent studies. Liu and Wen (2003) tested the saturated permeability and 65 

analyzed the related influencing factors of the compacted GMZ bentonite. Using the instantaneous 66 

profile method, Ye et al. (2010a) tested the unsaturated permeability of the densely compacted 67 

specimen, with a dry density of 1.7Mg/m3, under confined (constant-volume) conditions. Results 68 

show that the unsaturated hydraulic conductivity of the compacted bentonite changes from 1.13×10-13 69 

m/s to 8.41×10-15 m/s (gravimetric water content from 12% to 28%) and it is not solely function of 70 

suction. While under unconfined (free-swelling) conditions, the unsaturated hydraulic conductivity of 71 

the Gaomiaozi bentonite is in a larger range of 1.0×10-12 - 1.0×10-15 m/s. Based on the 72 

Kozeny–Carmen semi-empirical function, Niu et al (2009) proposed a semi-empirical equation for the 73 

calculation of the unsaturated permeability of the GMZ bentonite with the consideration of 74 

micro-structural changes.  75 

As far as the influence of temperature effect is concerned, Ye et al. (2009b) reported that the 76 

water retention capacity of the highly-compacted GMZ bentonite and bentonite-based mixtures 77 

decreases as the temperature increases, regardless of the confining conditions. 78 

In this paper, the soil-water retention curves (SWRCs) of the densely compacted Gaomiaozi 79 



 4

bentonite (GMZ01) under confined conditions and at various temperatures (20°C, 40°C and 60°C) are 80 

presented. Based on the results obtained, the unsaturated permeability of the GMZ01 is investigated 81 

by performing infiltration tests under controlled temperature.  82 

2. Materials 83 

The Gaomiaozi deposit is located in the northern Chinese Inner Mongolia autonomous region, 84 

300 km northwest from Beijing (Ye et al., 2009a, 2010b). Some basic properties of the GMZ01 85 

bentonite tested in this paper are listed in Table 1, which indicates that the GMZ01 bentonite has high 86 

cation exchange capacity and high adsorption ability. 87 

3 Experimental Methods 88 

The instantaneous profile method has been adopted in this study. This method was successfully 89 

used by many researchers to determine the unsaturated hydraulic conductivity of geomaterials (Daniel, 90 

1982；Richards and Weeks, 1953; Hamilton et al., 1981; Watson, K.K., 1966; Meerdink et al., 1996; 91 

Fujimaki and Inoue, 2003; Cui et al., 2008; Ye et al., 2010a). As an unsteady-state method, it can be 92 

used either in the laboratory or in situ (Benson and Gribb 1997). 93 

In order to apply this method to determine the unsaturated permeability of the GMZ01 bentonite 94 

at different temperatures, on the one hand, the SWRCs of this soil should be determined at relevant 95 

temperatures, and on the other hand, the corresponding suction profiles should be determined by 96 

performing infiltration test at different temperatures with suction monitoring. For a given temperature, 97 

the hydraulic gradient was determined using the suction profile; the water flux was determined using 98 

the water content profile; the hydraulic conductivity was then calculated based on the generalized 99 

Darcy’s law. The detailed calculation procedure can be found in Ye et al. (2009a).  100 

 101 

3.1 Determination of SWRCs  102 

3.1.1 Suction control  103 

The vapour equilibrium technique (for high suctions) and osmotic technique (for low suctions) 104 

were employed for suction control in this study. At high suctions, the experimental setup used was 105 

described by Ye et al (2005), as shown in Fig.2. Note that the vapor equilibrium technique was 106 

employed by number of researchers for controlling total suction in unsaturated soil tests (Bernier et al, 107 

1997; Blatz and Graham, 2000; Lloret et al, 2003; Chen et al, 2006). 108 

In this study, the confined GMZ01 specimen was placed in a desiccator and the water vapour 109 

above a saturated salt solution was circulated to provide the desired suction to the specimen. Saturated 110 

salt solutions and their corresponding suctions imposed at 20, 40 and 60°C are shown in Table 3 111 

(Tang and Cui, 2005). 112 

For low suctions, the osmotic technique was used and the corresponding setup is shown in Fig 3 113 

(Delage et al., 1992; 1998). Note that Tang et al. (2010) studied the temperature effect on the 114 

calibration curve of PEG solutions and found that this effect is insignificant. Thus, in this study, the 115 

osmotic technique was employed without temperature correction. 116 

 117 

3.1.2 Apparatus 118 

Custom-designed stainless steel cells with small holes in two ends (Fig.2, Ye, 2009a) were 119 

employed for water retention test under confined conditions. The holes were designed as channels for 120 
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moisture exchange between the specimen in the cell and the circulating air (or PEG solution) around it. 121 

For the temperature control, the setups were placed in ovens (Fig 3 and Fig 4), which have 122 

temperature controlled to an accuracy of ±0.1°C. Note that temperatures of 20, 40 and 60°C were 123 

selected as the testing temperatures in this study. 124 

3.1.3 Specimen preparation  125 

The GMZ01 bentonite powder was compacted into a thin cylindrical specimen, which has a final 126 

dimension of 20 mm in diameter and 6 mm in height. For the compaction, a press was used and the 127 

compaction was carried out at a velocity of 0.1 mm/min. The final dry density and water content of 128 

the compacted specimen were 1.70g/cm3 and 10.65%, respectively. 129 

3.2 Infiltration test 130 

The schematic layout of the temperature controlled infiltration test is shown in Fig.5. A 131 

custom-designed cylinder (Ye et al., 2009a, 2010a) is put in an oven with temperature controlled to an 132 

accuracy of ±0.1°C. The resistive relative humidity (RH) sensors (Cui et al, 2008) were used to 133 

monitor the RH changes. Note that the same type of sensor was used by Ye et al. (2009a, 2010a). It 134 

can be seen from Fig.5 that the sensors were installed every 30 mm along the length of the cell (4 135 

sensors) with a fifth sensor in the upper base plate of the cell. As the sensors measure the air relative 136 

humidity, no direct contact with soil specimen was allowed. For this reason, a small cavity was bored 137 

in the soil for each transducer. This cavity had a dimension allowing introducing the transducer cap: a 138 

porous stone of 2 mm thick and 5 mm in diameter. This porous stone separated the transducer from 139 

the soil sample and allowed the air humidity transfer from the specimen to the transducer (Ye et al., 140 

2009a).  141 

The distilled water was used in the infiltration test. The water absorbed by the specimen can be 142 

quantified by calculating the water volume change in the left marked glass pipe, which can be 143 

compensated by water from the right tube, in the U-shaped system outside the oven. Two drops of 144 

silicone oil were added into the left pipe to prevent water evaporation. A soft tube was used for 145 

connecting the U-shaped system to the inlet of the specimen in order to warm up the water to current 146 

testing temperature before absorption. The humidity and temperature changes were recorded by the 147 

data logging system. 148 

A double-piston mould was used for the compaction of the specimen (Cui and Delage, 1996). 149 

The powder of the GMZ01 bentonite was compacted in 5 layers. After the first layer (30 mm) was 150 

compacted and the surface of specimen was carefully scarified for the integrity of the specimen, the 151 

equal parts of the GMZ01 powder were added from two ends of the mould and then compacted to two 152 

15 mm sub-layers. This procedure was repeated for the other 3 layers. The compaction was conducted 153 

at a speed of 0.1 mm/min. The specimen has a final height of 150 mm, a dry density of 1.70 Mg/m3, a 154 

suction about 90 MPa for 40°C temperature and  100MPa for 60°C temperature, and a degree of 155 

saturation around 0.49 for 40°C temperature and 0.41 for 60°C temperature. 156 

The unsaturated permeability test on the GMZ01 bentonite at 20°C was previously measured and 157 

reported by Ye et al. (2010) and thus only the infiltration tests at temperatures of 40°C and 60°C were 158 

performed in this study. 159 

 160 

4. Results and discussion 161 

4.1 SWRCs  162 

The SWRCs of the highly-compacted GMZ01 specimen following wetting path at different 163 
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temperatures (20°C, 40°C and 60°C) under confined conditions are shown in Fig.5. Based on these 164 

results, an equation can be proposed to describe the water retention curves of the densely compacted 165 

GMZ01 bentonite (1.7 Mg/m3): 166 
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Where ψ (MPa) is the suction; rψ  (MPa) is a reference suction (309 MPa in this study); wsat is the 170 

water content in the saturated state: ( )4.2732000018.025.0 −−+= Twsat ; T (K) is the absolute 171 

temperature; a (MPa), b and c are soil parameters: 395.20)273(1474.4 +−−= TLna  ; b = 0.8086 ; 172 

c = 0.5864. 173 

Fig.6 indicates that, the water retention capacity decreases as temperature increases and the 174 

degree of the temperature influence depends on suction. This phenomenon can be analyzed separately 175 

at low and high suctions. At high suctions (> 4 MPa), changes of clay fabric and fluid in 176 

intra-aggregate spaces play a significant role in water retention capacity of GMZ bentonite. 177 

Intra-aggregate water moves into macro-pores (inter-aggregates pores) with temperature increase (Ye 178 

et al, 2009a). This process decreases the suction in the macro-pore level. As the suction is controlled, 179 

water flows out from the macro-pores, leading to a decrease of water retention capacity. At low 180 

suctions, capillary effect plays a decisive role in the water retention capacity. Increase of temperature 181 

causes changes in surface tension, which results in decrease of water content under constant suction 182 

conditions. 183 

In order to quantitatively assess the influence of temperature on the water retention capacity of 184 

the bentonite under different suctions, a ratio kT is defined as follows: 185 

%100
1
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T

TT
T w

ww
k                                        (3) 186 

where wT1 and wT2 are water content at temperature T1 and T2 respectively for the same suction.  187 

The relationship between the ratio kT and suction for the GMZ01 bentonite at 40°C and 60°C are 188 

given in Fig.7. It can be observed that the effect of temperature on the water retention capacity is 189 

closely related to suction, particularly in the range from 30 to 60 MPa. This effect reaches a maximum 190 

at a suction around 40 MPa.  191 

4.2 Unsaturated permeability  192 

4.2.1 Test at 40°C 193 

The relative humidity changes with hydration time in the infiltration test at 40°C are shown in 194 

Fig.8. Based on the SWRCs measured at 40°C (see Fig.6), the development of suction with hydration 195 

time can be obtained. Note that the conversion from relative humidity to suction was done using the 196 
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Kelvin’s law. Fig 8 indicates that, for the relative humidity sensor located 3 cm from the hydration 197 

water inlet at the bottom of the specimen, suction decreases rapidly in the first 200 h of hydration and 198 

then decreases much more slowly. For suction measured at 6 cm, it begins to decrease rapidly after 199 

100 h hydration and gradually decreases after 800 h hydration. As it is relatively far from the water 200 

inlet, suctions measured at 12 cm and 15 cm from the bottom of the specimen start to decrease rapidly 201 

after 200 and 300 h of hydration, respectively. The slope of the curve of suction versus time decreases 202 

as the distance from the inlet increases. The test was stopped after about 1670 h hydration, when the 203 

sensor at 3 cm distance from the inlet indicated that zero suction (100% relative humidity) was 204 

achieved at this height. 205 

The relationship between the unsaturated hydraulic conductivity and suction is shown in Fig.9. It 206 

can be observed that at 40°C temperature, the unsaturated hydraulic conductivity of the GMZ01 with 207 

a dry density of 1.7 Mg/m3 is on the whole between 1.64×10-13m/s and 1.34×10-14m/s. During the 208 

initial stages of hydration, the hydraulic conductivity gradually decreases with suction decrease, and 209 

the hydraulic conductivity reaches the minimum value of 1.34×10-14m/s when the suction drops to 210 

45 MPa; the hydraulic hydraulic conductivity keeps steady in the range of suction from 20 MPa to 211 

60MPa; but when suction drops to a level lower than 20 MPa, the unsaturated hydraulic conductivity 212 

increases rapidly and reaches 1×10-13m/s. 213 

4.2.2 Test at 60°C 214 

The unsaturated hydraulic conductivity of the confined GMZ01 determined at 60°C is shown in 215 

Fig.10. It can be seen that the values are generally between 1.79×10-14m/s and 1.19×10-13m/s. As the 216 

infiltration of water progresses, suction drops from 80 MPa to 55 MPa, while the unsaturated 217 

hydraulic conductivity decreases slightly. With suction reduction from 55 MPa to 20 MPa, the 218 

hydraulic conductivity remains almost constant despite of the suction changes. For suction lower than 219 

20 MPa, the hydraulic conductivity rapidly increases with decreasing suction and reaches a final value 220 

of 1×10-13m/s.  221 

When the soil suction is decreased from the initial value (about 80 MPa) to zero, the hydraulic 222 

conductivity first decreases from 2×10–14m/s to 7×10–15m/s and then increases to 1×10–13m/s, which is 223 

close to the saturated hydraulic conductivity. As in the first stage, water transfer is primarily governed 224 

by the network of large pores and these large pores are progressively decreasing in quantity and in 225 

size, resulting in hydraulic conductivity decreases. After completion of this large-pore clogging by gel 226 

creation, a normal conductivity increase with suction decrease is observed (Ye et al., 2009a).  227 

4.3 Influence of temperature on the unsaturated hydraulic conductivity  228 

To further assess the influence of temperature on the unsaturated permeability of the highly 229 

compacted GMZ01 bentonite, the unsaturated hydraulic conductivity of the confined specimen at 230 

20°C (Ye et al, 2009a) are compared to those measured at 40°C and 60°C (Fig.11). It can be seen that 231 

under confined conditions, the unsaturated hydraulic conductivity of the highly compacted GMZ01 232 

bentonite increases with temperature rise. Moreover, the rate of change also decreases as temperature 233 

increases. The temperature effect becomes more significant at higher suctions (above 20 MPa). In the 234 

range of lower suctions (less than 20 MPa), it is observed that the lower the suction the less the 235 

temperature effect. The possible explanation is that for lower suctions the moisture absorbed by the 236 

bentonite is mainly associated with microstructure changes and the temperature effect on the 237 

microstructure is not significant.  238 

The influence of temperature on the hydraulic conductivity is mainly related to the influence of 239 
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temperature on the water viscosity and the pore structure of the bentonite. To remove the influence of 240 

temperature on water viscosity, the relative hydraulic conductivity is introduced to allow for a better 241 

analysis of the influence of temperature on hydraulic conductivity. Relationships between the relative 242 

permeability and degree of saturation (Sr) of the confined GMZ01 at 40°C and 60°C are given in 243 

Fig.12. It can be observed that when Sr is higher than 0.57, the hydraulic conductivity at 60°C is 244 

similar to that observed at 40°C. This means that in this range of degree of saturation the influence of 245 

temperature on permeability is mainly due to the influence on water viscosity. On the contrary, when 246 

Sr is lower than 0.57, the relative permeability at 40°C is found higher than that at 60°C. Interestingly, 247 

this threshold corresponds to a suction of 60 MPa, and from Figs 9, 10 and 11 it can be observed that 248 

when s > 60 MPa the hydraulic conductivity decreases with suction decrease. As mentioned above, in 249 

this suction range hydration leads to progressive macro-pores closing thus to a decrease in hydraulic 250 

conductivity. This macro-pore closing process can be assumed to be more significant at higher 251 

temperature because of softer clay aggregates and lower water viscosity, explaining a lower hydraulic 252 

conductivity at 60°C than at 40°C. As the relative hydraulic conductivity has been found independent 253 

of temperature when Sr > 0.57 (Fig. 12), it can be supposed that the macro-closing process ended 254 

when Sr > 0.57; in other words, the influence of temperature on pore structure became insignificant in 255 

this range. 256 

 It is also important to note that the obtained results could be affected by the possible density 257 

gradient along the specimen as identified by Dixon et al. (2002) and Villar et al. (2008). This density 258 

gradient can be formed owing to the expansion of the hydrated bentonite that intrudes into the drier 259 

area under the effect of swelling pressure. If it occurs, the computation of degree of saturation without 260 

considering this gradient is not correct and the water retention curve considered is also inappropriate. 261 

In other words, the simultaneous profile method meets its limitation. Because in this study, no specific 262 

analyses were conducted after the infiltration tests, this phenomenon can not be verified. Further 263 

studies will be performed to investigate this aspect. 264 

 265 

5 Conclusions 266 

The SWRCs of the highly compacted GMZ01 confined specimens on wetting path and at 267 

different temperatures (20°C, 40°C and 60°C) show that the water retention capacity decreases as 268 

temperature increases; and the influence of temperature depends on suction. The ratio kT can be used 269 

to quantitatively describe the influence of temperature on water retention capacity of bentonite at 270 

different suctions.  271 

Under confined conditions and at 40°C temperature, the unsaturated hydraulic conductivity of 272 

the GMZ01 bentonite at a dry density of 1.7Mg/m3 is between 1.64×10-13m/s and 1.34×10-14m/s. At 273 

60°C temperature, the value is slightly lower, between 1.19×10-13m/s and 1.79×10-14m/s. 274 

For all the temperatures considered, the unsaturated hydraulic conductivity decreases slightly in 275 

the first stage of hydration. The value of the hydraulic conductivity becomes constant as hydration 276 

progresses. Finally, the hydraulic conductivity increases rapidly with suction decreases when 277 

saturation is approached. This phenomenon may be explained by the changes in the soil 278 

microstructure.  279 

Under confined conditions, the hydraulic conductivity increases as temperature increases, at a 280 

rate that decreases with temperature rise. Also, the influence of temperature on the hydraulic 281 

conductivity is quite suction-dependant. At high suctions (s > 60 MPa) or low degrees of saturation 282 
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(Sr < 0.57), the temperature effect is mainly due to its influence on water viscosity; on the contrary, in 283 

the range of low suctions (s < 60 MPa) or high degrees of saturation (Sr > 0.57), the temperature 284 

effect is related to both the water viscosity and the macro-pores closing phenomenon that is supposed 285 

to be temperature dependent. Note that further studies are needed to investigate the possible dry 286 

density gradient effect on the hydraulic conductivity determined based on the simultaneous profile 287 

method. 288 

 289 
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 390 

Table 1 Basic Properties of GMZ01 bentonite 391 

Property Description 

Specific gravity of soil 2.66 
pH 8.68−9.86 

Liquid limit  (%) 276 
Plastic limit (%) 37 

Total specific surface 
area/ 

(m2
·g−1) 

570 

Cation exchange 
capacity/ 

(mmol·g−1) 
0.773 0 

Main exchanged 
cation/ 

(mmol·g−1) 

Na+(0.433 6), Ca2+(0.291 
4), Mg2+(0.123 3), 

K+(0.025 1) 

Main minerals 

Montmorillonite(75.4%), 
quartz (11.7%), 
feldspar (4.3%), 

cristobalite (7.3%) 
 392 

 393 

Table 2 Salt solution and corresponding suction at different temperatures (MPa)(Tang 2005) 394 

Salt solution 20°C 40°C 60°C 

LiCl 2 309.0 − 340 

MgCl2 150.0 162.4 187.7 

K2CO3 113.0 122.0 144.8 

Mg(NO3)2 82.0 103.1 139 

NaNO2 57.0 −  

NaNO3 39.0 49.5 61.6 

NaCl 38.0 40.6 44.2 

(NH4)2SO4 24.9 32.2  

KCl 21.0 27.8 33.4 

ZnSO4 12.6 −  

KNO3 9.0 −  

K2SO4 4.2 5.1 5.5 

 395 



 13 

 

 

Compacted 
bentonite 

HLW 

Host rock 

Canister 

 396 
Fig. 1. Schematic view of a high level nuclear waste repository (Sanchez, 2004) 397 

 398 

 399 

 400 

Fig. 2. Constant-volume hydration cell 401 
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 403 
Fig. 3. Setup for the water retention curve determination using the vapor equilibrium technique 404 
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Fig. 4. Setup for the water retention curve determination using the osmotic technique 407 
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 409 

Fig. 5. Schematic layout of the temperature controlled infiltration test  410 
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Fig. 6. Water retention curves of the confined specimen at different temperatures 412 
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Fig. 7. Change of KT with suction 415 

 416 
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Fig. 8. Evolution of the relative humidity of confined GMZ01 with time at 40°C 418 
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Fig. 9. Change of unsaturated hydraulic conductivity with suction for the confined GMZ01 at 40°C 420 
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Fig. 10. Change of unsaturated hydraulic conductivity with suction for the confined GMZ01 at 60°C 422 
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Fig. 11. Evolution of unsaturated hydraulic conductivity with suction for the confined GMZ01 at 424 

different temperatures 425 
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Fig. 12. Relationship between Kr and Sr of the confined GMZ01 at 40°C and 60°C 428 
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