Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm - Publications Télécom Bretagne du Lab-STICC
Article Dans Une Revue Quarterly Journal of the Royal Meteorological Society Année : 2017

Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

Résumé

Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximization (EM) algorithm to estimate the model-error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non-additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
Fichier principal
Vignette du fichier
qj3048.pdf (1.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01574682 , version 1 (27-05-2024)

Identifiants

Citer

Denis Dreano, Pierre Tandeo, Manuel Pulido, Boujemaa Ait-El-Fquih, Thierry Chonavel, et al.. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm. Quarterly Journal of the Royal Meteorological Society, 2017, 143 (705), pp.1877 - 1885. ⟨10.1002/qj.3048⟩. ⟨hal-01574682⟩
243 Consultations
46 Téléchargements

Altmetric

Partager

More