Acetic Acid-Modulated Room Temperature Synthesis of MIL-100 (Fe) Nanoparticles for Drug Delivery Applications - NANOBIO
Article Dans Une Revue International Journal of Molecular Sciences Année : 2023

Acetic Acid-Modulated Room Temperature Synthesis of MIL-100 (Fe) Nanoparticles for Drug Delivery Applications

Résumé

Due to their flexible composition, large surface areas, versatile surface properties, and degradability, nanoscale metal organic frameworks (nano MOFs) are drawing significant attention in nanomedicine. In particular, iron trimesate MIL-100 (Fe) is studied extensively in the drug delivery field. Nanosized MIL-100 (Fe) are obtained mostly by microwave-assisted synthesis. Simpler, room-temperature (RT) synthesis methods attract growing interest and have scale-up potential. However, the preparation of RT MIL100 is still very challenging because of the high tendency of the nanoparticles to aggregate during their synthesis, purification and storage. To address this issue, we prepared RT MIL100 using acetic acid as a modulator and used non-toxic cyclodextrin-based coatings to ensure stability upon storage. Hydrodynamic diameters less than 100 nm were obtained after RT synthesis, however, ultrasonication was needed to disaggregate the nanoparticles after their purification by centrifugation. The model drug adenosine monophosphate (AMP) was successfully encapsulated in RT MIL100 obtained using acetic acid as a modulator. The coated RT MIL100 has CD-exhibited degradability, good colloidal stability, low cytotoxicity, as well as high drug payload efficiency. Further studies will focus on applications in the field of cancer therapy.
Fichier principal
Vignette du fichier
ijms-24-01757.pdf (5.25 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04450300 , version 1 (15-05-2024)

Identifiants

Citer

Mengli Ding, Jingwen Qiu, Stéphan Rouzière, Christophe Rihouey, Luc Picton, et al.. Acetic Acid-Modulated Room Temperature Synthesis of MIL-100 (Fe) Nanoparticles for Drug Delivery Applications. International Journal of Molecular Sciences, 2023, 24 (2), pp.1757. ⟨10.3390/ijms24021757⟩. ⟨hal-04450300⟩
149 Consultations
21 Téléchargements

Altmetric

Partager

More